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PART I: STATEMENT OF THE PROBLEM AND SOLUTION TECHNIQUE

1. INTRODUCTION

1.1. Background

The distinct feature of a Strling engine as compared 10 most other power producing
devices is its ability to be driven by virtually any heat source such as solar energy or
combustable refuse, among others. This leads to a number of promising applications: The
Stirling engine as a prospective power source for future space missions or as the rice husk
driven motor for agricultural machinery. In addition, a Stirling engine is silent, has low

cmission levels if powered by a combustion process and is energy efficient.

A crucial point for further development of Stirling engines is the optimization of its heat
exchangers which operate under oscillatory flow conditions. Heat exchanger optmization
depends on the ability 10 accurately simulate the fluid flow and heat ransfer behavior. h has
been found that the most imponant thermodynamic uncertainties in the Sdrling engine
designs for space power are in the heat transfer between gas and metal in all engine
components and in the pressure drop across the heat exchanger components. So far,
performance codes cannot predict the power output of a Stirling engine reasonably enough
if used for a widc.van'cty of engines. Thus, there is a swong need for better performance
codes. However, a performance code is usually not concerned with the details of the flow.
This information must be provided exiernally. While for laminar oscillating flow analytcal
relationships exist, there has been hardly any information about transitional and turbulent

oscillating flow which could be introduced into the performance codes.



In 1986 a survey by Seume and Simon (19862) revealed that most Stirling engine heat
exchangers operate in the transitional and turbulent regime. Consequently, research has
since focussed on the unresolved issue of transitional and turbulent oscillating flow and
heat transfer. Since 1988, the University of Minnesota oscillating flow test facility has
obtained experimental data about transitional and turbulent oscillating flow. However, since
the experiments in this field are extremely difficult, lengthy and expensive, it will be
advantageous to numerically simulate the flow and heat transfer accurately from first
principles. With a simulation program, one can enhance the understanding of the oscillating
flow phenomena in general. Also, a simulation program is useful in guiding the experiment
in some areas. Once tested for its validity, many more operating points can be *“probed”
with such a simulation program than with any experimental set-up. Finally, this program
can generate the input data needed for a performance code, as mentioned above.

It is the purpose of this research to contribute to the development of a realistic
simulation program, thereby adding to the basic knowledge and understanding of turbulent

oscillating flow and heat transfer and to the further the development of Stirling engines.

1.2. Literature Survey of Oscillating Flow Research

1.2.1. Scope and limitations of this Survey

The objective of this survey is to answer the following questions:
On oscillatory pipe flow, ...
a) ... what experimental data is available?
b) ... what numerical results are reported and how do they compare with
experiments and theory?

¢) ... what are the open questions for numerical analysis in this field?



Currently there is no consensus in the literature about the nomenclature of periodic
unsteady flows. Expressions like pulsating, pulsatile, oscillating or oscillatory are used
synonymously. In this work, we are primarily concerned with information about
periodically reversing flow with zero mean velocity. In the following, we shall denote this
situation by "oscillatory” or *oscillating” flow only. The expressions "pulsatile” or

"pulsating” flow will be used for flow situations with a net mean velocity.

Fully developed laminar pulsatle fiow can be expected to be a superposition of a steady
mean flow and an oscillatory flow, since the equation of motion is linear in that special
case. For an entry length situation and/or wransitional or turbulent flow, this is no longer
true and oscillatory flow has to be treated separately from pulsatile flow. Moreover, some
analytical solutions for pulsatile flow have singularities for zero mean velocity. Yet, results
for pulsatile flow can possibly be taken as qualitatively representative for oscillatory flow.
For instance the queston whether the turbulence structure in an unsteady flow is different
from that in steady flow can be discussed with knowledge about pulsatile flow. The
majority of publicadons deal with pulsatile flow, and these results are included in this
survey, but listed and described distinct from those for oscillatory flow. Similarly,
although our focus is on internal pipe flow, other geometries investigated could be a
valuable qualitative source of information and are therefore included. From a numerical
point of view, turbulence models for general unsteady situations may be of great

importance and are therefore included, 100.

This literature survey extends and updates the excellent review of Seume and Simon
(1986a) for the fluid flow problem. Since it is assumed that fluid flow is the underlying
problem, this review does not include information about heat wansfer. Once the fluid flow

is undersiood, the heat transfer can be inferred.

*



1.2.2. Laminar Flow
1.2.2.1. Fully Developed Flow

From the literature surveyed it is clear that fully developed oscillatory and pulsatile
laminar flow are well understood. Since the Navier-Stokes equations for this special case
are linear, a pulsating velocity can be split into a steady mean component and an oscillating
component. However, a distinction between oscillatory and pulsatile flow is necessary in
the case of an entry length problem.

Straizh G :

The oscillatng flow effect was experimentally discovered for laminar oscillating flow
conditions by Richardson and Tyler (1929), when they found the velocity distribution near
the mouth of a pipe different than the steady state profile, i.e. the maximum velocity was
located near the pipe walls and not in the center. Sex! (1930) was able to predict this
behavior for sinusoidal motion in a pipe. Following are a number of analyses and
experiments performed to study the flow pattern, pressure drop and friction factor for

different geometries as well as for bent circular pipes:

Analyses. Wommersley (1955) and Uchida (1956) calculated the velocities of laminar
pulsatle flow in a smaight pipe for non-sinusoidal motions of the fluid. The Uchida
analysis is still the most prominent analysis for laminar flow. Drake (1965) and Gedeon
(1986) analyzed the flow paniern of oscillating flows in rectangular channels of finite and
infinite width. Drake also derived a solution for the skin friction. Vosse (1986) treated
oscillatory flow in a flat plate channel numerically with a finite element method. Employing
a one-dimensional analysis and the well-known steady state friction factor, Jones (1985)
gave an analytical solution for the instantaneous pressure drop in oscillatory flow. For
pulsatle flow, Trikha (1975) obtained the time dependent friction factor by a Laplace

transform solution. Ohmi er al. (1981b,¢) gave instantaneous and time averaged values for



friction factor and pressure drop in a pipe and found behavior qualitatively similar to
wrbulent flow. Chen and Griffin (1983) stated that the pressure Joss in oscillatory flow is
considerably larger than in steady fiow. For general unsteady motion, Chambre and
Schrock (1978) derived an analytical solution for fully developed laminar pipe flow. Jguchi
et al. (1985a) obtained a ume dependent representation of the wall shear stress from the
integral momentum and energy equations. Unsteady boundary layers were treated in detail
¢.g. by Telionis (1975). Cebeci (1986) describes an intelligent numerical scheme for

unsteady boundary layers with large flow reversals.

Experiments. Studies of oscillatory flow in a swraight pipe are reponied by Shizgal ez
al. (1965}, while Edwards and Wilkinson (1971) did the pulsatile flow case. Their results
show good agreement with the Uchida analysis. Valensi (1947) performed experiments of
a liquid in a U-shaped tube with free oscillations, while forced oscilladons were
investigated by Chan and Baird (1974). Oscillatory flow in tapered channels was studied
experimentally and analytically by Gaver (1986), who found that the results differed
substantially from those in a straight channel. Similar results were presented by Ikeo and
Uzawa (1986), who investigated the oscillatory flow pattern in an convergent tube
numerically and experimentally. Duck (1985) solved the flow patern of a pulsatile flow in
a nonuniform channel numerically and found that above a critical amplitude of oscilladon, 2

failure of the boundary layer equations ocured.
Vv in ' g

The flow panern of laminar pulsatle flow in bent circular pipes of various cross
sections was studied experimentally by Chandran et al. (1974). That of oscillatng flow
was investigated numerically and cxpcrimcmany by Sudou et al. (1985). Chandran e:
al.(1974) found that the maximum velocity was shifted towards the center of curvature
compared to steady flow. Sudou et al. (1985) found good agreement of experiment and
predicgon. A study by Sumida and Sudou (1986b) for pulsatile flow used laser-doppler

anemomem to measure the axial velocity in 2 curved pipe. They reporied good agreement



with their numerical predictions. Telionis (1981) gave similarity parameters for
nondimensional treatment of pulsatile flow in curved pipes. Takami (1984) derermined the
pressure drop in pulsatile curved-pipe flow by a time-dependent numerical analysis and by
an approximation method and found good agreement. The wall shear stress in oscillating
flow as a function of radius of curvature was calculated by Sumida and Sudou (1985).
Yamane et al. (1985) found an increase of wall shear stress compared to a straight pipe
under identical conditions. Finally, Sumida and Sudou (1986a) determined the pressure
drop of an oscillating fluid in a curved pipe by experiment and analysis.

1.2.2.2. Entry Length Conditions

Oscillatory Flow in Straisht G :

The first investigation of this kind was reporied by Disselhorst and Wijngaarden
(1980), who studied separation near the entrance of a tube under acoustic resonance.
Thereafter separation only occurs for small and moderate Strouhal numbers. Peacock and
Stairman (1983) predicted the entry length shorter than in steady state conditions.
However, Seume and Simon (1986a) argued that experiments do not suppor this
hypothesis. Chayrreyon (1984 proposed a time dependent entry length. Ohmi (1986a)
measured the velocity distribution and the entry length. Apparently the only experimental
investigation into pressure drop behavior of oscillatory flow in a straight pipe was reporned
by Taylor and Aghili (1984), who gave values for pressure drop which were consistently
higher than steady state values. Their results implicily included entry length effects. It is

not clear how much of the reported losses were due to the oscillating flow effect alone.
lsag]l w

Using a Laplace transform, the straight co-axial annulus was analyucally solved by
Atabek (196]), where the limiting cases (circular pipe and parallel-plate channel) received

special consideration.



1.2.3. Turbulent Flow
1.2.3.1. Oscillating Flow

The concept of turbulence in oscillating flow is inseparable from the problem of
ansition. We will, however, distinguish between research which is primarily focussed on
the turbulent flow structure itself, and research whose focus is the transition. The above
mentioned experiments by Taylor and Aghili (1983) also covered the range of urbulent
flow. Hino et al. (1983) investigated turbulent flow in a rectangular duct experimentally in
great detail. For Remax=22500 and Va=309, they found that the turbulence structure of the
oscillating flow was substantally different from steady flow, and that the accelerating and
decelerating phases themselves had different turbulence structures. While in the accelerating
phase turbulence was triggered near the wall but suppressed, the turbulent kinetic energy
would be generated explosively near the wall in the decelerating phase. They also observed
that “during the whole cycle, a layer that obeys the semilogarithmic law exists above 2
sublaver similar to the viscous sublayer”!. While in the accelerating phase, this layer was
very thin, its thickness increased in the deceleration phase. Hino et al. also stressed the
point that while the statistics of oscillating flow turbulence are quite different from steady
flow, “the elementary process which maintains the turbulent producton is almost the same
as in the steady wall wrbulent flow™2. In a paper in Japanese, Yoshiki et al. (1986) studied
the velocity distributions in air between two pistons of arbitrary phase difference including
180°. The Re number and Va number range was 1.32x10% 10 5.94x10% and 119 10 353,
respectively. Their results indicated that the turbulence appeared “in velocity waves for all
conditions independently of the piston phase difference. The instantaneous velocity

distribution became almost uniform in the center region and looked like those for steady

IM_Hino. M. Kashiwayanagi. Nakayama, A and T. Hara in J. Fluid Mechanics, vol. 131, p 370, 1983
2M Hino. M. Kashiwavanagi, Nakayama, A and T. Hara in J. Flwd Mechanics, vol. 131.p 398, 1983,



turbulent flows, regardless of the phase difference™l. As in laminar flow, the near wall
fluid reacted faster according to acceleration and deceleration.

1.2.3.2. Pulsatile Flow

Mizushina et al. (1973) measured velocity profiles and turbulence intensities and found
that there are two distinct classes of flows according to the pulsation frequency: For lower
pulsation frequencies, the velocities behave quasi-steady and the wrbulence intensity does
not pulsate. For higher pulsation frequencies the velocity profile is quite different from the
steady state form and the turbulence intensity fluctuation pulsates oppositely to the velocity.
Cousteix (1979) found, that pulsations do not significantly influence the boundary layer
and the turbulence structure. He therefore applied a steady state turbulence model 10
simulate the boundary layer numerically. However, only a single frequency was
investdgated. Kirmse (1979) compared his own experimental data with the computations of

Vasilev and Kvon (1971} finding poor agreement.

Ohmi et al. (1980a,b,c; 198]a,d) derived 4 characteristic parameters to describe the
flow pattern, but without physical interpretation. They examined the influence of the
pulsation frequency on flow pattern and turbulent friction losses. Three flow regimes
(quasi-steady, intermediate and inertia dominant) are reported as a function of frequency. It
is stated that the instantaneous friction factor was either equal, greater than or less than the
steady state friction factor, but the time averaged friction factor was always greater than the
one for steady state. Ohmi et al. (1983) investigated the eddy viscosity distribution as a
function of pulsating frequency with a X-wire probe. The distribution was found different
from the one in steady flow. Tu and Ramaprian (1983) studied instantaneous velocity and
wall shear stress when the mean flow was well in the turbulent range (Reg= 5-104). The

frequency was vaned over a wide range. Their results showed that the time mean flow was

YH. Yoshiki, S. Tsumura, T. Endoh and N. Takama in Nihon Kikaigakkai rombunshu, vol. 52, p. 3650,
Nov. 1986



affecied by pulsations when the oscillation frequency approached the characteristic
frequency of turbulence. According to their results, neither the time mean nor the ensemble-
averaged velociry followed the universal log-law. The unsteadiness affected the turbulence
intensity and the Reynolds-stress significantly. They noted that quasi-steady turbulence
models neglect this effect of unsteadiness on the time mean flow. Jguchi er al. (1985b)
studied the structure of turbulence as a function of tme averaged Reynolds number,
frequency and amplitude rato. They presented a turbulence model including a lag in
response time and compared it with their experimental results. Ohmi et al. (1986b)
measured the rurbulent slug and the velociry field in the inlet region of a pipe. Mao and
Hanrarry (1985,1986) measured the ume variations of the wall shear stress for small
velocity amplitude ratios and high frequencies. Their results indicate that the wall shear
stress varies sharply over a narrow frequency range. Iguchi et al. (1986b) observed two
types of turbulent-slug behavior, according to whether the pulsation frequency was Jow or
high. In both cases the occurrence of the turbulent slug was periodic, in contrast to the
randomness that is characteristic in steady flows. On the basis of his experiments Bulatiowa
er al. (1986) concluded that the turbulent fluctuations are not altered by frequency or
channe] length. He also found that a peak in the mean velocity coincided with a minimum in

the wrbulent fluctuatons.
‘umenical Analy igh

Only fully developed situations have been investigated so far. Vasilev and Kvon (1971)
used a steady state turbulence model fof pulsatile flow. Their results were not confirmed by
Kirmse (1979). Thomas (1974) used a turbulence mode! which utilized the mean residence
tme of a fluid particle at the wall and predicted cross-secton averaged values of the shear
stress for low frequencies. Younis (1978) used the low-Re number k-¢ turbulence model to
predict the data of Lu ez al. (1973). Kita et al. (1980) proposed a fluctuating (five-layer)
eddy viscosity model 1o calculate the velocity distibution and the friction factor. Their
results are confirmed by experiment. Blondeaux and Colombini (1985 ), using the steady

state turbulence model of Saffman, predicted the failure of the log-law. The applicaton of



’,

this turbulence mode] was suggested for low frequencies only, and no conclusions about
the general validity of the model were drawn. Kebede et al. (1985) used an alterative 10
the widely used concept of eddy viscosity. They replaced the Bousinesq stress-strain law
by a set of differential rate equations for mrbulence stresses. Surprisingly, this low-Re
number differential stress model gave superior predictions than a one-equation turbulence
model, but worse results than the low Re number k-& model. Reddy e1 al. (1985) applied a
pseudospectral method to investigate the viscous wall region. The amplitude of the
pulsanons was large. The pulsation frequency was large and characteristic of the wall
region eddies in steady turbulent flow. “The mean profiles of axial velocity, fluctuation
intensity and turbulent production rate were essentially the same as in steady flow™l. The
instantaneous turbulence production rate was largest at large adverse pressure gradients,

which agrees with the findings of Hino et al. (1983) for oscillating flow.
Other Geomeries

Flows over a flat plate were experimentally studied by Cousteix (1982, 1985) and Cook
et al. (1985), who also did a numerical analysis. For the flat plate, Cousteix (1982)
obtained similar findings as for the pipe (Cousteix,1979), where the turbulence structure
near the wall was not much altered by the pulsations. Cook (1985) used an unsteady
boundary layer code together with a steady state turbulence model. A comparison with his
experiments showed fair results. Experiments of Binder (1982) for large amplitude
pulsations in a parallel- plate channel showed that the mean velocity and the streamwise
turbulent intensity of the flow were una!‘fected by the large amplitude pulsatons. The wall

shear stess lead the free steam and its amplitude was less than predicted by theory.
1.2.3.3. Generally Unsteady Turbulent Flows

Gosman (1980) discussed turbulence models for the near wall region of unsteady

flows. Given the uncenainty of whether the law of the wall holds generally, he suggesied a

1U. Reddy. J. B. McLaughlin, R. J. Nunge in Fluid Eng. Trans. ASME, vol. 107, n.2, p.205. June 1985
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systematic investigation in turbulent oscillating flow in a simple geometry. He mentioned
numerical computations by Younis for fully developed oscillating flow, using the low
Reynolds number turbulence model of Jones and Launder (1973). The results of those
computations suggested that the law of the wall does not hold for Reynolds numbers and
frequencies typica! for automobile engines. Iguchi and Ohmi (1983a) studied the influence
of acceleration and deceleration on velocity, shear stress, friction factor and eddy viscosity
experimentally. On that basis they stated a limit for the applicability of the quasi-steady state
10 an unsteady condition. In Jguchi and Ohmi (1983b) the authors expand the former paper

to frictional losses in a pipe.

1.2.4. Transitional Flows

1.2.4.1. Transition in Oscillating Flow
Flow in a Pipe

The description of transition depends swongly on the criterion used 10 define transition.
This criterion is not necessarily consistent in all publications, nor is it always stated.
Sergeev (1966) used flow vizualization 1o describe transition in oscillating flow and was
the first to give an equation relaung the critical Re number to the Va number. Merkli and
Thomann (1975 ) observed transition in a resonance tube at very high frequencies. For
these conditions they reporied a weak voriex street outside the boundary layer. A similar
observation was made for channel flow by Sobey (1985). He also predicted these vortices
numerically through stability considerations. Hino ef al. (1976) 100k hot wire
measurements of tansition. Their signals showed a Jaminar-like phase during the
acceleration and a turbulent-like phase during decélcration. Grassmann and Tuma (1979)
visualized transiton by means of an elecrrolytc technique and reported an equaton for the
critical Re number. Ohmi et al. (1982) found & large parameter range between laminar and
turbulent regime and quantfied their findings in a transiton equation. Dijkstra (1984)

observed ransition, but did not state a criterion. Numerical studies were done by Cav:ac e:
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al. (1985). They were able to predict the lower bound of stability qualitatively, but not
quantitatively. In his experimental work, Sewne (1988) defined as criterion for transition a
rapid increase in the measured rms velocity fluctuations. The parameter range covered in
his experiments was representative for Stirling engines heaters and coolers. Aside from the
always-laminar region and the ansitional region he identified also an always turbulent
region at very high Reynolds and Valensi numbers. He verified that the critical Re number
in oscillating flow depends on the Valensi number and described two mechanisms to trigger
turbulence: externally caused transition due to incoming fluid, and internal transition due 10
the usual boundary layer instability at higher Re numbers. All researchers agree that

transiton to turbulence can be described by a reladon of the form

RCmmu = const. - Va0.3

where the constant is some number around 1000.
Other Geometries

Park and Baird (1970) reported transition during free oscillations of a liquid in an U-
tube. Von Kerczek and Davis (1972) predicied the lower bound of stability of Stokes layers
on a flat plate. They, like Caycac et al. (1985), could predict transition only qualitatively,
but not quantitatively. Jguchi et al. (1982) studied free oscillations in an U-tube and defined
transition as the moment, when the velocity profile deviated from the Uchida-type laminar
profile. Akao er al. (1986) studied transitional oscillatory flows in a rectangular duct. In
agreement with I-iino (1976) they found that the flow had two different phases: a quasi-
laminar one and a wrbulent one. However, the flow in the laminar-like phase was quite

different from temporary fully developed laminar flow.
1.2.4.2. Transition in Pulsatile Flow

Gerrard (1971) probed a pulsatile flow with a mean Re-number of 3770. He found thai

closer to the wall, in the turbulent phase the velocity profile can be represented by a power
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law according to (y/R)”". Sumida et al. (1984) measured pressure drop losses in
ransidonal flow in curved pipes as mean-time values. Good agreement with an
approximation is reported. Iguchi e1 a! (1986a) studied the relaminarization of turbulent
slugs in a rectangular duct at four different aspect ratios. At low accelerations the behavior
is quasi-steady. At high accelerations they observed the disappearance and reappearance of
turbulent slugs at fixed phases in a cycle, which cannot be inferred from sieady state
behavior. Shemer et al. (1985a,b) found for pipe flow that the mean properties of the flow
was not influenced by the moderate pulsations in both laminar and turbulent flow regimes.
They presented the oscillating parn of the flow parameters as a function of amplitude and
phase at exitation frequency. In partcular, they explained the phase lag between the mean
flow and the Reynolds stresses by the relaxation time of turbulence relative to the
instantaneous mean shear. To capture this feature of turbulence, they proposed a complex-
valued turbulence viscosity. Stenler and Hussain (1 986) observed transition in a pipe flow
using laser-doppler anemometry (LDA) measurement and defined the stabiliry-transition
boundary as functions of Rey mean. Refrequency and the frequency itself. They repont
phase-locked turbulent slugs, like Iguchi e al. (1986a). Tozzi and von Kerczek (1986)
examined the linear stabiliry theory for sinusoidally pulsating pipe flow and found that the
relevant axisymmetric disturbances are more stable in pulsatile flow than those of the mean

flow alone.
1.2.4.3. Transition in Generally Unsteady Flows

Davis (1976) gave an extensive review for theoretical approaches to stability, which
could be applied -to oscillatory flows. Lefebre and White 1987) investigated transition 1o
rurbulence in a constant-acceleration pipe flow started from rest. It was reported that the
tme of ransition was constant throughout the pipe, and that the critical Re number varnied
from 2x105 10 5x105 depending on the acceleration. Two characieristc parameters were
derived to characterize the onset of transiton: an acceleration parameter and a local

boundary-layer thickness Re number.
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1.2.5. Conclusions

1.) Laminar oscillating flow is well understood. Analytical and numerical analyses agree

well with experiments.

2.) There are numerous investigations on turbulent pulsaﬁle'ﬂow. but no agreement exists
on whether pulsations sighiﬁcamly disturb the steady flow pattern. Mizushina et al
(1973), Ohmi et al. (1983) and Tu and Ramaprian (1983) reported differences
compared to the quasi-steady pattern, while Binder (1982) and Cousteix (1979, 1982,
1985) found no significant differences. It is believed that much of this confusion can be
arributed 10 a reluctance by the various researchers to use consistent dimensionless
similarity parameters to classify their investigations. However, the collective findings
seem to indicate that the mean and instantaneous flow parameters are significantly
affected by moderate 10 large amplitudes at high but not too high frequencies of

pulsation.

3.) For ransitonal and turbulent oscillatory flow, especially the works of Hino e1 al.
(1983) and Seume (1988) provide a pool of useful experimental data. Additional
qualitative information can be found foremost in the papers on pulsatile flow by Tu and
Ramaprian (1983) and Shemer (1985). So far, no numerical investigation of
ransitional and turbulent oscillatory flow in a pipe of finite length has been made. Even
for the fully developed situation, only one investigation was mentioned (Gosman,
1980).

4.) A wrbulence model which is well suited for unsteady situations has not been identified
yet. However, it was mentioned by several authors that the turbulence model sought
should provide a means for the relaxation time of turbulence [Shemer eral. (1985,
Kebebe et al (1985), Iguchi et al.(1985b)).
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1.3. Objectives

1.) Develop a numerical algorithm suitable for solving the governing equations in an exact

and efficient manner.

2.) Identify a turbulence model which has the capabilities to predict unsteady wrbulent

flow.

3.) Evaluate the performance of the wrbulence model chosen for its capability 1o predict

transition.

4.) If necessary, modify or optimize the chosen turbulence model.

5.) Compute the fluid flow and heat ansfer of a number of data points representative for
Stirling engine heaters and coolers and compare the predictions with experimental

results if available.

6.) Answer the following questions:

« Are steady state correlatons appropniate representations for the fricoon coefficient and
Nusselt number of the fully developed turbulent flow?
« Do enmance length effects play arole?

« Is heat ransfer or fluid flow the major contributor 1o irreversibilities in the cases

considered?

1.4. Outline of This Work

To start with, the problem will be described in 2 general mathematical way. In order to
estimate the limitations of the approach chosen it is imporiant 10 state and ingoduce the
assumptions made, which is done next. Then, the choice of the turbulence model is laid out
and the mode! and some alternatives are discussed. At this point, the complete system of

equations is established, whose solution should lead to the desired results. This brings us
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to the numerical method for solving this system of equations, which is presented and
discussed next. Following this, the computational results are given: First, we will test the
numerical model and the turbulence model with known steady state cases. Then, the
performance of the turbulence model for transition predictions is shown. Finally, the
results of the oscillating flow computations are given in the order fluid flow, heat ransfer

and irreversibility.
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2. PHYSICAL SITUATION AND ITS MATHEMATICAL
DESCRIPTION

2.1. Differential Equations

The governing differential equations express the conservation of mass, momentum and

energy for a continuum and are given in the following for an infinitesimal control volume.

Conservation of mass:

op ., =
5 +div(pu ) =0 el

Conservaton of momentum:
pQ-G- + puegrad(D) = - grad(p) + div(t) +1
ot P
2.2)

Conservation of energy as enthalpy equation (neglecting radiation):

.a_h e = - div(Q QE 0
pal + puegrad(h) div(q) + 3 + Usgrad(p) + H® 23)

where T is the velocity vector, p is the density, p the thermodynamic pressure and W is

ity. T denotes the stress 1ensor and T stands for any additional body

the dynamic viscos
o

forces. h is the specific enthalpy of the fluid and 'c'f represents the heat flux vector.

denotes the viscous dissipation function and is defined as

p® = tegrad(v) (2.4)
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It may be pointed out here that this set of differential equations together with the
boundary conditions of Chapter 2.4 specify the problem completely, even in the case of
turbulent flow. However, a practical solution of these differential equations involves some
averaging ( ¢.g. ensemble averaging) over time and/or space. It is this process of
averaging, during which the new unknown terms are created, for which a turbulence mode!l
needs to be employed later on.

2.2. Basic Assumptions

The heat transfer and fluid flow problem in Strling engine heat exchangers combines
several different problems, some of which are not of primary impontance of this research.
For instance, a Stirling engine heater usually consists of a bundle of bent circular tubes.
The fact that the tubes are bent further complicates the underlying situation but is not
essential in order to reach the goal of this research. Therefore, the physical domain in this
research shall be a straight tube. Also, we will assume that no changes happen in the

azmuthal direction and that the velocity in this direction is zero,

w=0 —=0 2.5)

Throughout this work the fluid will be treated as a Newtonian continuum. Together
with the Stokes hypothesis, we can express the divergence of the stress tensor of eq. (2.2)

as

. . - 2 :
div(t) = 2 div(u def(u)) - £ grad(u div(u))
3 2.6)

where dcf('x?) denotes the deformation tensor and is defined as

def(u) = — | grad(u) + [grad(
) 2[a;r )+ [grad(@)’ ] 27)



Here the superscript “T" denotes the transpose of the tensor. With this input and the
assumption of no body forces, the conservation equation for momentum becomes the
Navier-Stokes equations:

p %?_ + puegrad(s) = -grad(p) - div(s grad(@)

+ vy (grad@)'] - £ grad(u div@®)

(2.8)
Defining the pressure as
2 . -
P=p+%ud

p+Fudvi) 29)

equation (2.7) can be rewtitten in the form

p 9, puegrad(u) = -grad(P) + div(y grad(v)) + div[u lmd('ﬁ)]T]

ot (2.10)

It may be noted here that, for the laminar case, a more convenient form of P could have

been defined as

P=p--1§pdiv(ﬁ) 21
It can be shown that, for the case of constant dynamic viscosity, with this formulation
the momentum equations can be expressed like eg. (2.10) but without the last term. Often,
in laminar flow problems, the viscosiry can be eated as constant. However, in case of
wurbulent flow, the effect of turbulent mixing is frequently expressed by the conceptof a
turbulent viscosity which is not a fluid property but depends on the flow conditions and is

therefore not a constant. In this case, the definition of P as in eq. (2.9) 1s preferred and eq.
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(2.10) is applicable as written. The formulation of eq. (2.10) in axisymmetrical coordinates
is given in the appendix.

Generally, the physical properties of the working fluid should be temperature
dependent. Since we are concerned with turbulent oscillatory flows, turbulent diffusion
will be the dominant effect, and a variation in the molecular diffusion coefficient due to
temperature effects may be secondary. For now we will restrict the computations to
consian properties. Once the basic problems in turbulent oscillatory flow are understood,
variable properties may be introduced. The numerical program is perfectly capable of
handling variable propertics. As a consequence of the assumptions of constant properties
the convective heat ransfer problem is decoupled from the fluid flow problem and the laner

can be solved first.

In the energy equation (2.3), the first term on the left hand side may be simplified using

Fourier's law,

q = -k grad(T) (2.12)

To wansform h to T as the variable on the left hand side of eq. (2.3), we use the

thermodynamic identty

Dh_.DT,1g.amDP
Do P (2.13)

where D/Di represents the substantial derivative and B denotes the isobaric coefficient

of compressibility

d(1/p)
B=p 5T
P (2.14)
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which is zero in case of an incompressible liquid and 1/T for an ideal gas. Using the

vector identiy
L divik grad() = divi- grad (T) + k ‘m:(cp)gndm
| 4 P Cp (21 5)

the energy equation takes the form

gl Je =di L .Bl 92 1 _u_
p5 PV grad('r)-dw[cp grad(T)] + <, (a‘ + uegrad(p)} + cp¢

d
+k gra (Cp)

ograd(T)
% (2.16)

The viscous dissipation function & for a Newtonian fluid in axisymmetric coordinates
is given in the appendix. Assuming constan! properties, the last term of ¢q.(2.16) is zero.

For an ideal gas, this equation then becomes

3T , o3 gl 1 .= N
p-éT + puegrad(T) = div [-C—': grad(T)] + C_P [37 + vegrad(p)) + 'C:dj

2.17)

Equations (2.1), (2.10) and (2.17) provide four equations for the four independent
variables are u, v, T and P. They are the complete set of equations necessary 10 describe the
fluid flow and heat transfer in oscillating flow conditions. For irreversibility considerations
entropy comes into play but no additonal differential equation needs to be solved. For a
single phase single substance our thermodynamic system has two degrees of freedom. We
have already specified p and T. Thus s = s(P,T), and we can solve locally for s. The
information content of the second law of thermodynamics is implicitly contained in the

momentum and energy equatons by virtue of the definition of the stress tensor and by
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Fourier’s law, both of which specify directions of processes. However, the differential
equation for the entropy is useful to determine the amount of entropy generated in a given
control volume. But since the generated entropy is a deduced quantity based upon the
solution of the equations above, its derivation will be deferred to chapter 11.

Summarizing, the most important basic assumptions are listed in the following table:

Table 2.1: Basic Assumptions

* axisymmetric situation
¢ constant properaes

* continuum

» Newtonian fluid

» Stokes hypothesis

* no body forces

* Fourier's law

» No radiaton heat ransfer

2.3. Dimensional Analysis

Two different physical situations are phySica]ly equivalent if the dimensionless
parameters characteristical for the situation are the same. In order to obtain meaningful
dimensionless parameters, proper scales for length, time, velocity, pressure and
temperature have 1o .be defined. Seume and Simon (1986a) have identified the following

scales for the oscillatory flow problem:

length scale Xgcale = R=DR2 pipe radius
time scale lgcale = 1w time for one oscillation
velociry scale Uscale = Um,max amplitude of the mean velociry
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pressure scale Pscale = p “m.max2

temperature scale tscale = (AT)ref

Since for now we are concerned with r_elativc tempcriturts and pressures only, we will
subtract a reference value (To, po) from T and p. Fora situation where there is a significant
variation in the thermodynamic pressure as in real Sdrling engines, it may be advantageous
10 scale the pressure with some reference pressure and not with the velocity scale
(Reckienwald, 1989). The precise nature of the temperature scale (AT)ref is yet 10 be
determined. For the University of Minnesota oscillatory flow experiment, a suitable
definition would be (AT)rer = Twalt - Tin- Using these scales and suitable reference values

for the thermophysical properties, the dimensionless quantities are :

X r

X = R r= R I=w!
u Y

us= V=

Ummax Ummax

R?

¢= > @ grad =R grad div =R div

Ummax
P= P=p+Zudiviu’) T=

P ummaxz P 3# (AD)res

P H k
p="_ s Cp=i k=T

Pref Href " prt kret

With these definitions the conservation equations of chapter 2.2 can be written in the

following way.
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Mass conservation:

9 1 e
Va5 3 Remax div( pu) = 0 (2.18)

Conservation of momentum:

Vap 9% + % Repay pPUograd(i) = - 5;"‘—“ grad(P) + div[y grad(u)) + div[ grad(i)']

2.19)
Energy equation:
Vap %% + -;— Re,,, pusgrad(T) = F]; div[z_"; grad(T))
+VaEc %% + -;— Re,,, Ec usgradip) + Ec® (2.20)
where the dimensionless parameters are defined as:
Pref Ummayx D
Re =—>— 2.21)
Href
Pref @ D?
a="—_ (2.22
4 Pref : )
Href Cpref
Pr=—" 2.2
ket (2.23)
o)
Ummay~
Fc=—— (2.23)
Cprer (AT )res
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Other, related dimensional parameters could have been be used instead, like

L 0D 4 _Va
Su Um.max Rem, (2 25)
u 1 (AT |
Mas= L —— ‘J—‘ @Dret Ec (ideal gas) (2.26)
Y Ru/M To
c
where Y= —p-m—f 2.27)
Cvrer

Geometric similarity is maintained if L/D is identical. For sinusoidal flow, the relative

amplirude rato, AR. is a related and dependent similariry parameter:

2 Ummax 1 D Remax

AR =__w—r = ... sinusoidal flow ... = ‘ii’ Va (2.28)

2.4. Boundary Conditions

The boundary conditions for these equations are:

u v p T
op
wall: Uwat =0 vwall =0 '5; =0 Twall = const.
. du op oT
centerline Y 0 veenterline = 0 = 0 P 0
- 2
inflow Upn = Um vin="0 %= 0 Tin = const.
. 2 3p ar
outflow 8x=0 vour = 0 ax=0 3x=0
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2.5. Operating Range of Experiment and Points of Investigation

Seume and Simon (1986a) have compiled the similarity parameters for a great number
of Stirling engines. Based on this information, the test rig of the University of Minnesota
was designed to cover the parameter range of most of the Sirling engines compiled. Figure
2.1 shows the operating range of the experiment . The two offset regions correspond to
two different pipe diameters. Within this operating range, the points chosen for numerical

investigation are marked, maintaining the lentering from the experiments of Seurne (1988).

1e+06 L] R4 o T T 177717 ¥ ) L] LI R L T L 1 LB
C
C
t e
d T
1e+05 ¢ | - .
- 1.5" pipe : 2.125" pipe -
[ e m f :'
Re .. [ : J
le+04 ¢ 3
i o j
. .-~ vransition line according 10
1e+03 E lguchietal. and Ohmi etal.
2 Re = 800VVa 3
r- -
1e+02 . E— e S
)| 10 Va 100 1000

Fig. 2.1: Daia points investigaled
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3. TURBULENCE MODELING OF OSCILLATORY FLOW

The purpose of this chapter is 1o document the choice of a turbulence model for further
investigation and to discuss some of its already known deficiencies with respect 10 their

impact on oscillating flow modeling.

For now, we will restrict our attention to constant density flows. Since the Cartesian

tensor notaton dominates the turbulence literature, it shall be adopted here.

'3.1. Background

As pointed out in Chapter 2, the basic equatons to describe the fluid flow and heat
wransfer problem are valid also in the case of rbulence. However, it can be shown thatin
order 1o solve a problem with the mathematical model of Chapter 2, Re%4 grid points in 3
dimensions and Re3/ tme steps are necessary. An example of the required effort to fully
simulate steady turbulent channel flow (without any turbulence model) at a Re number of
10 000 is given by Ragallo and Moin (1984): If the smallest eddies were resolved with four
grid points in each direction, a total of 5 x 1010 grid points and 2000 tme steps would be
necessary 1o get 1o the statistical steady state. For an oscillating flow situation, a large
number of cycles would have 1o be computed to filier out the periodic steady state. It would
be impractcal and excessively expensive to solve such a huge system of equadons and to
perform so many tirﬁe steps. Even if a "direct” solution of the turbulence problem was
achieved, the vast amount of generated data would have to be treated statstcally, i.e. '

averaged, in order 10 provide manageable and meaningful information.

Averaging the nonlinear constituent equations instead of the results eliminates some of
the mathematcal problems associated with a “direct” solution, but introduces new,
unknown terms for which a closure has to be found by either experiment or theory. There

are several wavs by which the consatuent equatgons can be averaged. If we are interested 1n
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the coarse structure of turbulence, a subgrid model is appropriate. Here, the governing
equations are averaged over some small volume and time interval. The flow can be
calculated on a grid greater than this small volume and time interval. Itis the effect of the
wrbulence directly in this small volume during this time interval on the flow “seen” by the
grid which has to be provided by the subgrid model. If we are interested only in time-mean
values, one can average the governing equations over a long time and compute the time-
averages of the flow quantities. This is usually called Reynolds averaging. With Reynolds
averaging, the details of the turbulence structure are lost; only the effect of the turbulence
on the mean flow is described. Another technique for averaging is the renormalization
group (RNG) approach. In the RNG theory, the velocity field is first transformed into a
wave-number space by a Fourier transform. The shon wave-length modes from a narrow
wave-vector band are then averaged and their effect on the long wave-vector modes (in
which one is usually interested) is described by a renormalized viscosity. This process is
repeated until all scales below a certain Jevel of wave-lengths are eliminated. RNG theory
can generate subgrid models or Reynolds averaged models, depending on what the lowest
allowable level of wave-lengths should be. Details of this approach can be found in Yakhot
and Orszag (1986).

Since the scope of this work is to give insights about practically useful quantities like
fricton coefficient and Nusselt number, the details of the turbulence structure need not be

resolved. Consequently, a subgrid model was not considered in this research.

Once a decision has been made which form of averaging should be used for a given
problem, there are a number of closure optons for the new terms created in the averaging
process. The remainder of this chapter deals with the consequences of the closure |

assumptions made in the chosen model.
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3.2. Phase Averaged Governing Equations

The concept of time-averaging becomes more cumbersome in unsteady flows.
According to Reynolds and Hussain (1972), the time independent mean flow is found by
time-averaging the flow over some long time. If we are dealing with cycles (e.g. pulsatile
flow), this Jong time must be an integer muldple of a cycle time. A time-periodic cyclic
quantity is obtained by "phase” averaging, i.c. ensemble averaging at fixed times of a
cycle. For completely unsteady flows, the only way an average can be obtained is ensemble
averaging the results of many experiments at fixed times measured from the start of the
experiment and having identical initial conditons. Since our antention is oscillatory flow,
the time-mean of this flow is known to be zero, and long-time averaging is obsolete. The
periodic steady state--which is the focus of this work--can be extracted from the full

equations by phase-averaging.

The process of phase-averaging the equations consists of three steps:
(1) decompose any transpor quantity into periodic and a randomly fluctuating parn
2=3%+7: (2)insen the decomposed quangtes into the governing equations; and 3)
phase-average the equations. In the following, an apostrophe will denote a fluctuating pan

of a quantity, an overbar will indicate the phase average over this quantity.

With this technique one is not limited to the condition that the characteristic time of the
flow must be much larger than the Kolmogorov time scale, (v/e))2. The emphasis is on the
condition that the time behavior of the flow must have a nonrandom stuciure which can be
recovered by proper averaging. Since this is the case even for high frequency oscillatou)"

flows, a turbulence model may successfully be applied 1o this situation.
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Continuity Equations:

(3.1a,b,0)

The phase averaged and the fluctuating velocity fields both satisfy the continuity
equation independently. Since the continuity equation is linear, averaging causes no new
terms in equation (3.1b). Note that new quantities would be introduced if density

fluctuations were to play a role here.

Navier-Stokes Equations:

T, T, —ou, 5P L
— T ' = OGP O lp=—t
x T Pie ¢ Py, ox ox ox. [ a"j
) ) ' ) (3.2)
where:
Rate of change of the
mean velocity

Change of mean momentum
due to convective transport in
mean velocity field

Change of mean momentum
" due to convective transport in
Sfluctuaring velocity field

Mean driving force

Diffusion of mean momentum

As can be seen from equation (3.2), the phase averaged transpon equations for the

mean momentum contain a term involving the unknown fluctuating velocity. If no ranspon
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equation is solved for the momentum transpon of the fluctuating momentum field, this term
must be modeled with a turbulence model. However, even if transport equations are solved
for these terms, these transpon equations will contain other, higher order terms which
originate during the averaging of those equations and which must be modeled. The point is
that any type of averaging of 3 non-linear ransport equation like the Navier-Stokes

equations will lead to additional unknown terms (well-known closure problem).

Energy Equation:

5 —of T or_0 (ko 1L BB, %, L5
p-éT+puJax+puj x)‘ax,i\c, )‘J],"'C,,(al'Hl.iaxj‘.’“‘iaxj“’cl,dn'pE

3.3)

where £ denotes the turbulent dissipation rate defined later. Here, the third term o the
LHS of equation (3.3) must be modeled as well as the pressure-diffusion term u' op'/9x;.

However, according to Mansour (1989), this term is negligible.

3.3. Turbulence Models for the Phase-Averaged Equations

It should be emphasized here that the turbulence model 1o predict oscillating flow
should give correct answers for engineering applicatons. It should be as simple as possible
and may very well be "cusiom made" for oscillating flow in a pipe and not be applicable 10
other situations. It is ot the purpose of this research to find a generally valid wrbulence

mode! for any unsteady flow situation.

The turbulence models in question can be divided into two groups, i.e. those models
which use the eddy viscosity concept and those which directly solve an equation for the
term {p u; 0u/ox; ). The latier models are called stress models. In a differential stress
model., a differental equation is derived for each component of the turbulent shear sress

tensor, pu,'u) . The al gebraic stress model simplifies those differentia) equanons
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sufficiently that an algebraic relation can be extracted. Among the models which use the
eddy viscosity concept are the mixing length model, the k-€ mode! and the stream function-
vorticity model. '

3.3.1. Eddy Viscosity Concept

The third term on the left hand side of equation (3.2) is frequently called "Reynolds
stresses” or "turbulent stresses” because it is responsible for the enhanced turbulent cross
stream transpor of streamwise momentum and therefore works just like the diffusion of
momentum which stems from the viscous stresses. This similarity between the laminar
diffusion and the rrbulent diffusion-like convection is the basis of a simple, old, yet very
successful turbulence concept, the eddy viscosity concept (EVC). Noting that for now

aaj‘/axj = 0, we can transform this term as

U aui,afpu,u’L, ')
Jox o\ AT
] (3.4)
According 1o Boussinesq (1877), the Reynolds stresses can be expressed just like

viscous stresses, but with a different diffusivity, called the eddy viscosity p;:

au aU 2

Spu = ax ax 3PkS, EVC
(3.5)

This equation represents the eddy-viscosity concept, in which k stands for the turbulent

kinedc energy, defined as

= 3 '7]
U+ v e w

——

]
ke
2 (3.6)
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and 8;; is the Kronecker delta in tensor form. The last term in eq. (3.5) can be absorbed

in the pressure term without loss of generality!. For an arbitrary scalar gransport variable ¢,
the EVC can be written as

—— u'l a.é

¢ 3.7

where Oy is the appropriate turbulent Prandtl number.

Following the analogy used here, the wrbulent motion is analogous to the molecular,
the “turbulent eddy " is the analogy for the molecule and, after Prandtl, the analogy to the
mean free path is the so-called mixing length. From kinetic theory it is known that the
dynamic viscosity is proportional 10 the mean speed of a molecule times the mean free path.

Consequendy, the turbulent viscosity can be expressed as

A‘ A
vy ~ Uscale * Lscale (3.8)

The problem is now reduced to finding appropriate velocity and length scales and a
proportionality constant in order 1o determine ;. Once Wy is known, the Reynolds stresses
can be evaluated with (3.5) and the Navier-Stokes equations can be solved. Some

consequences of the EVC are discussed in section 3.3.6..

3.3.2. Mixing Length Model

The mixing length model, introduced by Prandul in 1925, is still widely used today in
industry and shall therefore be reviewed for its applicability in oscillating pipe flow. It uses

the eddy viscosity concept of equation (3.5) and can be summarized as follows:

« length scale = mixing length I : needs to be specified from empirical information

1Then. the modified pressure of equ (2.9) becomes Pep+ 273 (W div(v) + ph)
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X
)

i M"l‘{[ 5, ul] ".}

3.9)
« Proportionality constant = 1.0

For a 2-dimensional boundary layer type situation, the Reynolds stresses then become:

o as,
Ox, | Ox,

axz

- x:‘iu"i =l
(3.10)

The main features of this mode] are:

+ good results for simple flows

+ simple to implement

+ economical

- for complex flows, it is difficult to specify I,

- does not take transpon of turbulence into account

- not suitable for rapidly developing flows and recirculating ﬂqw's

Because of the shortcomings outlined above, the mixing length model cannot be used in
this study.

3.3.3. Comparative Computational Tests of Various Turbulence Models

Presently, there are many versions of k-¢ models and stress models available, and it is
not obvious which model is best suited for the given task. However, most recently. a
number of researchers conducied exhaustve tests of various turbulence models for the

Revnolds-averaged Navier-Stokes equations.
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Patel, Rodi and Scheurer (1985) examined and tested 8 rbulence models for turbulent
flow past a flat plate with and without pressure gradient. The models investigated were the
¢.€ models of Chien (1982), Dutoga and Michard (1981), Hassid and Porch (1578).
Hoffmann (1975), Lam and Bremhorst (1981), Launder and Sharma (1974), Reynolds
(1976) and the k-w model of Wilcox and Rubesin (1980). All those models are based on
the eddy-viscosity concept. Patel et al. found that the models of Chien, Lam and
Bremhorst, Launder and Sharma and Wilcox and Rubesin gave comparable results and
were decidedly bener than the others. For turbulence model modifications it seems
desirable that a model bears an immediate relationship with physically measurable

quantities. This, however, is not the case for the Wilcox and Rubesin model.

Henkes and Hoogedoorn (1989) did a similar performance evaluation of turbulence
models for natural convection flows along 2 vertcal flat plate. They investigated the k-€
models of Chien (1982), Hassid and Poreh (1978), Hoffman (1975), Jones and Launder
(1972), Lam and Bremhorst (1981), Reynolds (1976) and To and Humphrey (1975) as
well as the high-Reynolds number k-€ model. Additionally, they investigated the algebraic
smess model of Cebeci and Smith (1974). Their findings were similar to those of Patel et
al. (1985): Overall, the models of Chien (1982), Jones and Launder (1972) and Lam and
Bremhorst (1981) showed the best results. It is remarkable that the algebraic stress model

by Cebeci and Smith gave significantly worse predictions than the k-€ model above.

Martnuzzi and Pollard (1989) coniparcd turbulence models for steady turbulent fully
developed pipe flow at Re numbers of 10000, 38000, 90000 and 380000. They compared
the high-Reynolds number k-€ model, the Lam-Bremhorst low-Re number model and four
variants of an algebraic stress model (the ones of Launder et. al. (1975) and Naot et. al.
(1970), both for with and without wall functions). ﬁéy showed that the low-Re number k-
€ mode] gave the best results and claimed that the use of algebraic stess models should be

confined to high Re numbers or regions where there is only moderate shear.
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In a 1985 paper, Kebede, Launder and Younis investigated whether a differental swress
model applied to pulsatile flow yielded better results than the conventional EVC. They
conclude that the EVC with k-€ model has the best performance near the wall. A one-
equation EVC model lead 1o rather large phase leads of u'v’ as compared to the
experiment, while the differential stress model produced a too large phase lag.

Conclusions. On the basis of these tests, stress models did not yield superior results
to models using the eddy viscosity concept. Moreover, since stress models are also more
complicated to implement and more expensive 10 run, a stress model shall not be used in
this work. The models of Jones and Launder (1972) (or the updated version by Launder
and Sharma, 1974), Chien (1982) and Lam and Bremhorst (1981) seem to be the most
versatile and reliable. Of those, the Lam-Bremhorst model is the only one which uses the
true isotropic turbulent dissipation rate jtself and is the easiest to implement
computationally. Therefore we have chosen the Lam-Bremhorst model! for further

investigaton.

3.3.4. The Lam-Bremhorst Form of the k-¢ Model

The k-€ model uses the eddy viscosity concept , but different scales than the mixing
length model. Whereas it has Jong been agreed on that vk represents a well chosen
velocity scale for the large scale motion!, many attempts have been made to conveniently
specify a length scale. Mainly because of simple boundary conditions the use of € as a
quasi-length scale? became very common. Even though the turbulent dissipation occurs at

the smallest scales, £ is a quasi-length scale for the large scale motion. It is defined as:

1 ]t is known that the wrbulent kinetic energy is contained mainly in the large scale eddies. Therefore vk

is a velocity scale for the large scale wurbulent motion.
3
2 1
_ kneuc energy _ Kk =k o -t

charact. uime Qf_ J‘f_ {
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a“.i auj ou'.
ExV }‘;;*3: —ax—;

G.an
From here on, we will only be concerned with the isotropic part of €:
ou’; du';
€=V x ox
) ) (3.12)

In the k-€ model, two additional partial differentia) equations for the turbulent kinetic
energy and the turbulent dissipation rate are derived by manipulating the full, ame-
dependent Navier-Stokes equations. The resulting equations for k and € contain some terms
which must be modeled. The hypotheses and assumptions going into this closure were
examined most recently by Mansour (1989) and shall not be discussed here. 1t may,
however, be pointed out here that if a far reaching modification of the k-€ model proves ©0
be necessary for oscillatory flows, the closure assumptions themselves will be up for
discussion. In his paper, Mansour pointed out that the existing models for the € equation

should be improved near the wall.

Harlow and Nakayama (1967) were the first to inooduce a k-¢ model, but their model
did not predict turbulent pipe flow well. Jones and Launder (1972, 1973) proposed 2
different k-£ mode!l which gave good results for a great number of flows. Based on the
model of Jones and Launder, a number of modified low-Re number forms have been
proposed by various researchers. All of these different forms use the same, generally
agreed on closure assumpuons for the exact equations for k and €. The difference between
them is how the boundary conditions are introduced and how the wall funcdons are
formulated. The particular formulation of Lam and Bremhorst (1981) offers the advantage
that no additonal terms are added to the k or € equation in case of low trbulence levels. As

mentioned above, this version will be adopted here for further work and is shown in Table
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3.1. For a more thorough discussion of the differences berween the Jones/Launder and the
Lam/Bremhorst models, the reader is referred to the work of Schmidi and Patankar (1987).

The so-called high-Reynolds number model (HRN) is a special case where the
functions fy, f] and f2 are set to 1. However, in case of fully wurbulent flow where the
turbulence Reynolds numbers Ry and R, are high, those functions asymptotically approach
unity. The real difference between the HRN and the low-Reynolds number model (LRN) is
due to the boundary conditions.

Boundary Conditions for the HRN Model.

centerline Neumaﬁn boundary condition ok/or =0 og/or =0
inflow Dirichlet boundary condition

outflow Neumann boundary condition ok/ox =0 oe/ox =0

wall take guidance from the law of the wall and set the near wall viscosity

10 ;= Hy*/u* where ug = ¢,0-25 k0.5
Neumann boundary condition fork dk/dr =0
Dirichlet Boundary condition fore € = u¢3/xy

Boundary Conditions for the LR!\' Model.
Same as above for centerline, inflow and outflow.

wall Dirichlet and Neumann boundary conditon fork k=0, dk/or = 0
Neumann boundary condition fore 9e/or=0
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Table 3.1: The Lam-Bremhorst Form of the k-€ Turbulence Model

EVC v, = const. ° ﬁ,c.k . f“u
Prandd n 2
Kolmogorov| v, =¢c, f, k'? k—e— = c,f, l‘e_
Expression (3.13)
Rate of Change Convection Diffusion Generation Destuction
& Ca . o (ma .
P3r + PY S ax’ axj \ok axj) +pG pE
(3.14)
M, o¢
2 ¥ . _a.[-*——\ : &2
P * Py ox Bx.\ ‘axj) +c1f1pG— '°2f2p'f
) J
3.15)
Constant cu €] ¢ Ok O¢
Value 0.09 1.92 1.44 1.0 1.3
e aw [, % |og
=.’J§T—V ax a" ax
J (3.16a,b)
HRN model: fu=fi=fa= 1.0
LRN model:
f, = (1 - exp(-00163 R )) (1+ 20)
(3.17)
3 .
f)=l+( 0?55)
H (3.18)
2
f,= 1 -exp(-R,) (3.19)
2
K
Ri=vE (3.20)
K ¥
Ry=—% (3.2
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3.3.5. Evaluation of the Constants in the k-€ Model

There are S empirical constants for the model, ¢y, €], €2, Ok, O¢. In order to judge

whether the customarily used values of those constants are applicable also for oscillatory
flows, it is useful to examine how these constants were determined for fully turbulent flow

fu=fy=f2=1).

cul. The closure for G, Eq. (3.16b), applied to thin shear layers, yields

&, b
ox. v
J ' (3.22)
Substitution of (3.22) into the definition of G, Eq.(3.162a), leads to
2 2
uu, u‘iu‘j
G = v‘ = kz
“E (3.23)

For local equilibrium layers the generation and destruction of turbulent kinetic energy

are in balance:

G=¢ (3.24)

Thus € cancels and

Lk (3.25)

The square root of the quanaty of the right hand side was measured by Champagne.

Harris and Corrsin (1970) to be approximately 0.3. Hence ¢ = 0.09.
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_Batchelor and Townsend (1948) found that for grid generated rbulence at high -

€2
Re numbers, k is inversely proportional to the distance to the grid,
k~1/x] or k=y1/x; ¥= const. (3.26)
The transpon equation for steady flow past a turbulence grid is
-0k ..
o .5;: - (3.27)
Together with Eq. (3.26) this becomes |
e= T X} (3.28)
The ransport equation for € behind the grid is
U "Qf’ = Eki
} (3.29)

Inserting Eq.(3.28) into (3.29) shows that ¢ = 2. Later on, €2 is adjusted to 1.92.

?? Near the wall Eq. (3.24) holds approximately and the universal law of the wall
|

may be assumed:

b= In(9v")

3 (3.30)
LT A AN

u v TNVP (3.31a.b.c)

where u™ is the normalized velocity and y* is the dimensionless wall distance and uq is

the fncdon velociny.
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Neglecting the convective terms, using Eq. (3.24), and substituting v; from (3.13), the
transport equation for € becomes

2
3 |Suk 2|, fc-c,)e
:-s:;(o;e ar,]*f’ =0

Equation (3.24) alone, combined with the definition for G, Eq. (3.16), yields another

equation for €. Assuming that near the wall the shear stress is approximately equal to the

(3.32)

wall shear stress and using the definition for ug from (3.31a), we can write

30
eE=u; 5
P 0%, (3.33)
With this, (3.32) becomes:
22— 2 _ 2
_a—-[cuok a ullaxz . '{Cl . Cz\ u: \au]/axzj O
d a'_/a \ ) —
X2 € U) X2 k (334)

Using the law of the wall (3.30), the velocity gradients are evaluated as

2—

aul = U, 0 ul =. U,
XX 2 2
axz 2 axz X x;

From experimental data (e.g. Laufer 1954) it is known thatk = 3.5 utz . Then Eq. |
(3.34) can be solved for c):

x2 c, 3.53
t (3.35)
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Forcy =192,x=04 and og = 1.3,¢1 is determined as 1.44.

Aliernatively, from Eq. (3.25), is is known that k = uq2 ¢y~ 05 Then, Eg. (3.35) can

be rewritten as

KI
O % (3.36)

€, =c-

Rodi and Scheurer (1986) argue that the assumption about the wall shear stress Jeading

to Eg. (3.33) is not realistic for adverse pressure gradient flows.

o) and o¢|. Thetwo Prandt] numbers were first assumed to be close to unity?.

Then ‘... many calculations were performed in which the constants were sysiematically
varied. The values chosen are those which we believed gave the best overall agreement for
the flows considered “2 However, the flows considered were all steady flows. It seems
likely that a tuning of the turbulent Prandt] numbers to unsteady flows might yield different
results. But in turbulent pipe flows, the most dominant terms in the k and € equation are the
producton and destuction terms. Therefore it seems unlikely that a moderate change in ok

and o has a significant effect on the overall results.

Conclusions. The constants are determined for fully turbulent flow in the near wall
region for simplified equilibrium situations. Even though ¢ is not specifically derived for
steady flows, based on the observations of Rodi and Scheurer (1986), it appears likely that
this constant is affected by the unsteadiness of the flow. The values for Gk and Gg are tied
10 steady flow experiments, but it is believed that the impact of a variation of their values is

small.

1w, Rodi (1982, in Turbulence Models and Their Application in Hydraulics: 8 State of the
Art Review. 2nd ed.. Int Assoc. for Hydr. Res., Delft, p.28
2K. Hanjah: and B.E. Laundcr (1972) 1n ). Fluid Mech, v.52. pan 4, p.619
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3.3.6. Discussion of Some Obvious Shoricomings of the Turbulence Madel Chosen

Even though the eddy viscosity éoncept contains many crucial assumptions, the
measurements of Seume (1988) clearly indicate that the turbulent transport is proportional
1o the level of fluctuations and suggest that some kind of EVC seems 10 be appropriate for

oscillating flows.

A toublesome assumption of the EVC underlying the k-€ model is the stress-strain
response time. Commonly, turbulence is seen as a cascade process in which energy is
rransferred from the mean flow field to ever smaller eddies. At the end of this cascade
process dissipation of this energy into molecular motion takes place. The amount of energy
dissipated depends on the large scale motion, whereas the scale at which this dissipation
occurs depends on the molecular viscosity. Clearly, this cascade process takes time in
reality. However, the eddy viscosity concept as used here disregards this fact. With the
EVC, a change in the large scale mean flow causes an immediate response in the turbulent
stresses which are due to the action of the smaller scale motion. For strongly unsteady
flows it seemns to be absolutely necessary to modify the EVC in order to incorporate a
relaxation time. Such proposals have been made in the literature. Shemer et al. (1985)
proposed that the eddy viscosity should be a complex number and mentioned earlier
successful computations with such a model. Iguchi et al. (1985b) proposed a mode! for the
axial component of the fluctuating velocity u'mngs Which took the phase lag between ug, and
U'rms into account. However, this model required the experimental measurement of the

phase lag which is impracucal.

The eddy viscosity concept hinges on the assum-ption of local isoropy of turbulence,
i.e. that the turbulence structure is locally independent of direction. It is known that this
condition is frequently not satisfied. Especially in low Re number flows, where the large
scale and the small scale are not far apart, the assumption of local isomopy seems physically

questionable. Despite that, turbulence models using the eddy viscosity concept have proven



1o be highly successful in recent years. One reason for this could be that songly
anisotropic turbulent eddies have little influence on the main velocity field, a theory which
is supported by Yakhot and Orszag (1986). Moreover, as Yakhot and Orszag (1986) argue,
the effects of anisoropy might be asymptotically small and may be neglected. Rodi (1984)
asserted that “in recirculating flows where the normal stress and shear-stress terms in the
momentum equations are of the same order, both terms are ofien small compared with the
inertial and pressure-gradient terms SO that isotropy of the turbulence model is of linle

imporiance'™.

Rodi and Scheurer (1986) have found that the predictions with the k-¢ mode] become
rather poor for a flat plate boundary layer for the case of a swong adverse pressure gradient
and suggest a modification 10 the model to overcome this difficulty. They showed that the
problem of the LRN model to predict swongly adverse-pressure-gradient flat plat boundary
layers satisfactorily stemmed from the near wall region. The problem was traced to 8 100
small generation rate of € in the near wall fegion which leads to an oversized length scale
and 100 high turbulent viscosities. However, the results of this study indicated that a
modificaton of the k- mode] as proposed by Hanjalic and Launder (1980) worked well for

adverse pressure gradient situations on a flat plate.

Even though Rodi and Scheurer’s findings uncover a serious problem in the k-€ model,
they cannot be used directly for oscillatory pipe flow. First, the convective deceleration
over a flat plate does not translate easily into the local deceleration experienced in pipe flow.
In their study, the flow over the flat plate was steady at a fixed point in space. Here, the
cascade process is statistically steady. Viewing the flow froma Lagrangian point of view,
the decelerated fluid panticle travels through regions of steady cascade processes for which
the EVC applies fairly well. On the contrary, durin g a local deceleration of the flow, the
shoricoming of the EVC will affect the predictions directly. Second, the extension of the

Hanjalic and Launder proposal rests on the condition that the irrotational contribution

1w, Rodi (1984, in Turbulence Models and Their Application in Hydraulics: 8 State of the
Art Review. 2nd ed.. Inl. Assoc. for Hydr. Res., Delft. p. 30
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dugm/ox of the generation term G in the € equation is (i) retained! and (ii) multiplied by a
higher constant than the rotational part. In our computational scheme, the irrotational
contribution is always retained and the presence of a dum/dx quantity does not give the
desired response to a Jocal deceleration dum/0t. Nor do we have the freedom 0 just replace
dum/dx by 1/um, dum/ot.

However, following the general ideas of Rodi and Scheurer (1986), a plausible
modification of the k-€ model would be the addition of an deceleration or acceleration term

10 the generation term of the € equation. One definition of such a term is

G;xcg) EE Ka (337)

where K, is a dimensionless acceleration parameter defined as?

T dum(t)
1% oum()3 (3.38)
Then, equation (3.15) becomes
p X d (1 3¢ 3
B&'=a_-l a— c1flp¥[0+c3l(,£]-pe
T . (3.39)

where D/Di is the substantal derivative and c3 is 8 new constant which has to be scaled

against experimental data.

} Hanjalic and Launder (1980) as well as Rodi and Scheurer (1986) used boundary layer codes which usually
negelct werms like dum/dx.
0.545 0o dum(l) h
Um
puW3 ' a *
Aqu 18 the ume dependent quasi-steady friction facior. It remains 10 be seen whether the use of this parameicr
would vicld beuer results.

2 Iguchi et al. (1986a) defined another acceleration parameler as X' —— 2 ) where
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Before any modification is _recommended. the results of the unmodified chosen model
must carefully be analyzed. Only if a clear need for 2 modification is indicated, should it be

pursued.

3.4. Summary

The k-€ model discussed here is based on the eddy viscosity concept and uses two
additional transport equations for the velocity scale and the wrbulent length scale. Itis
given in the form of general unsteady transpor equations. In its derivation, no specific
assumptions about steady flow have been made. It accounts for the convective transport of
wrbulence. While the HRN version relies on the validity of the universal law of the wall,
the LRN does not. Both the HRN and the LRN models are thoroughly tested and have
shown, especially the LRN version, good results for a great many flow situatons. In the
derivation of the model, no specific assumptions have been made about the steadiness of
the flow. Therefore this model is, in principle, applicable for unsteady situations and is

used for further investigation.
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4. NUMERICAL METHOD FOR THE SOLUTION OF THE
GOVERNING EQUATIONS

The elliptic partial differential equations together with the boundary conditions and the
assumptions given in Chapter 2 give a complete mathematical description of the problem.
However, since this set of vcwpled differential equations cannot be solved analytically,
numerical methods are needed. Any numerical method has two basic steps: First, the
differential equations must be transformed to a set of algebraic equations by discretizing
them. Second, this set of algebnic equations has to be solved. In this chapter, those two

steps will be outlined.

The aim of this chapter is (i) to document the discretization method used here, in
particular the time discretization developed in this study, (ii) to describe the solution

techniques investigated and (iii) to discuss criteria for convergence.

4.1. Discretization Method

4.3.1. General Discretization

Many methods to discretize differential equations have been proposed. Among the most
prominent discretization methods are the finite difference method, the finite element method
and collocation method. For a more dewailed overview the reader is referred 1o Shadid
(1989), who gives an excellent classification of the individua! methods. According to
Patankar (1988), so far no method can be claimed to be superior. The method employed in
this work is the finite volume method which is closely related to finite difference method.
Here, the governing equations are integrated over a small control volume. For
completeness the standard features of this technique will be outlined. A thorough treatment

of the finite volume discretization technique can be found in Patankar (1980). However. the
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validity of the method shown there is extended here 10 variable-density time-dependent

convectve-diff usive situations. This extension will be shown in detail.

The first imponant step for an efficient treatment of a setof partial differential equanion
is 1o cast all differential equations into one general form. Then, only one algorithm s
needed for virtually all dependent variables. For any scalar ranspon variable, the rate of
change in a control volume must equal the net inflow into the congol volume plus the ratc
of generation of this scalar within the contro! volume. The net inflow is the sum of the
convective and the diffusive inflow. Then,we can write for the generalized scalar ¢ in an

infinitesimal control volume!:

_3_(§_CQ* div(pu o - T, grad ¢) =S

t 4.1)

Here, the second term on the left hand side is the sum of the convective and diffusive
transpon wansport ou! of the contol volume. T is the general diffusion coefficient for the
variable ¢ and S denotes a source term which stands originally for the rate of generation of
the scalar 6. However, without loss of generality we will take the freedom to cast
evervthing which does not fit on the left hand side of the equation into this source werm
Equatons (2.1), (2.9) and (2.13) can be recovered from equation (4.1) by choosing the

appropniate quangties for 0. T and S which are given in Table 4.1.

1n this chapier, we will drop the overbar for the phase averaged quanuues. Unless otherwise specificd,
refercnce 0 a quanuty will then be 10 the phase averaged quanuty.
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Table 4.1: Interpretations of ¢, I and S for the governing equations

Name Equation ¢ r S
Continuity 2.1 1 0 0
oP T
x-Momentum 2.10 | u Hett - g + div(ieqr [grad(u))’)
oP T
r-Momentum 2.10 v Mefr -3 div(perr [grad(v))")
k w9
Energy 2.17 T % + o X T grad(p) + 1o + pe
. i
Turb. Kin. Energy  3.14 k ‘&: pG - pe
Ky € €2
Turb. Diss. Rate 3.15 € - aifipG T -cafp T
O¢ k k

Now, the calculation domain Q is divided into a number of finite control volumes
which constitute the computational grid. This grid may be different for each dependent
variable. As shown by Patankar (1980) it is advantageous to use a “staggered grid" for
each velocity component and a "main grid" for all other variables. The values of the

dependent variables will be evaluated at the center of their respective control volumes.

Figure 4.1. show's a‘typical grid and a typical control volume cluster and gives the

nomenclature for the following derivations. Denoting the flux vector of the variable ¢ for an

infinitesimal contol volume interface as J', equation (4.1) may be rewritten as

o(p®)
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This equation may be integrated in space over the finite contro! volume! and in time as

n e ied t+AL +At

” I-b—(g-li)dt'dx'rdr'-kj ffdiv(i)dx'rd:'dr-_[ f

Now we express the time integral over any quantity z as the product of the mean value
of z during the time step times the length of the time step At,

S dx' rdr' dt'

ey,

(4.3)

1+At

I z(1) di'= z At

-

44)

To evaluate the individual terms in equation (4.3) a number of profile assumptions must
be made with respect to the variation of the variables 10 be integrated. First, we assume that

the mean value 2 is some “mix” of the old time value and the new time value,

z=fz , +(1-D)z 4.5)
Here, f is a "time integration factor" which may be different for each dependent variable

and for each control volume. For now we will assume that f is a constant for each

dependent vanable. Later we will present a scheme which uses locally variable time

integration factors.

Second, for the first term on the left hand side and for the right hand side of equation
(4.3) we suppose that the quantities pé and S are constant over the conzrol volume. Then.

the integrated form of equation (4.3) can be written as

1 Note that the third dimension of the control volume is set 10 unity in the 2-D formulauon. Therefore,
dV=dA dx where dA=rdr.
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PeOp - P3O 1y . 0 o
PP AV f, 21+ () £ =15+ (f)S “ws)

where f} is the time integration factor for the ¢ equation and S denotes the volume
integrated source term. The superscript © denotes the known values attime t, whereas the
absence of a superscript indicates the new time level t+At. The term 1J is defined as

TiE), -l 40 (4_.,)'

10 is defined similarly and indicates the net outflow of the integrated fluxes of the

vanable ¢ atume t.

In the same manner, the continuity equation may be integrated with another, still

arbitrary time integration factor f2:

pP - p?’ ’ -
- AV +f, IF + (1-f)) IF° =0 48

where
TF=F,-F, +F,-F, @9)

Here, £F and ZF0 stand for the sum of the integrated mass fluxes at the time levels

+At and 1, respectively.

According 10 Patankar (1980) we define:

J - Fe0p=ag (% ) (4.10)

a = D, A(IPe,l) + max|-F,. 0} (4.11)
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J0- Fodp=a (¢p - ¢7)
ag =D, A(IP¢)) + max[-E,,0]
Jg-F.¢,,--aw(¢,-¢w)
a,, =D, A(Pe, ) + max[-F,,0]
JS-F3¢§=-a;(¢;-o:v>
&, =D{ A(Pe, ) + max[-F2, 0]

F‘ei=-5i Ji=e,w,n,s

A(Pe)) = max[O. (1-0.11Pe iI)S’] ,i=e,w,n,s

4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

where D is the integrated diffusion flux across a control volume interface and Pe is the

Peclet number associated with this interface.

The definitions for ay; , aN®, as and ag® are analogous. Furthermore it is

ppaV
&="A
(<]
o _ pPAV
4T A
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S =SV + S0, 8V @22)
For simplicity, we write

Tap=aptagriyti 423)

In order to transform equation (4.6) into an equation for the dependent variable ¢,

equation (4.8) is formally multiplied by some mix" of the dependent variable ¢

(]
f,0p+ (1-) & 4.24)

and then subracted from equation (4.6). Then, after some algebra, the discretization

equaton for ¢ for the control volume around P becomes
[o,+f,{Zap+ TF. s,aV}]ep=
£, Tiaygopp) * (£ - A1) (Zas, + ZF-spav )] e+
£, S AV + (1) [5e8V + T orp) “2%

Note that equation (4.25) does neither depend on {2 nor on f3, and that no assumptions
were made about the values of the f's. A value of O corresponds to a fully explicit ume
marching procedure (FE), a value of 1 to a fully implicit scheme (F1) and a value of 0.5 10
the well-known Crank-Nicholson scheme (CN). Since equation (4.23) is independent of
f5, we can set {2 in equation (4.8) 10 unity without loss of generaliry and substtute for ZF
= a,0 - a;. For the fully implicit scheme we define

=2a,.

(2 7
2R xp 1A SpAd 4.26)
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by, = SAV + 2%,

(4.27)
Then equation (4.23) can be transformed to
[f,2,5+ 0-pa] 0= 1, [Z e + by ]+
(1-1)) [Z (035000509 + (ST+S70PAV + (a2 - TF°)07] @1

From this is can be seen that any non-fully implicit formulation can be interpreted as a

deviation from the fully implicit case.

The choice of the value of f) is dictated by accuracy and stability considerations. While
the Crank-Nicholson scheme is the most accurate, the fully implicit scheme is the most
stable. The Crank-Nicholson scheme is mathematically unconditionally stable but can lead
to physically unrealistic oscillatons. Therefore, our goal is 1o develop a scheme which is as
close as possible 10 a Crank-Nicholson scheme, but also gives always physically realistic
results. To get the limit of stability for the Crank-Nicholson scheme, an analytcal
perturbation analysis can only be performed for the simplified case of constant coefficients.
In such a situation for two dimensions and an equidistant Canesian grid, it can be shown

(Roache, 1968) that the physical limit of stability is given by the von Neuman analysis as

1
A2t 2 <3
ax? ay? "2 (4.29)
U_Al + V_A't < ]
Ax 4y (4.30)
udx VvAy
T + T <4 (2.31)
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where a = I/(pcp). It is evident that for an ever finer grid conditon (4.29) is the most
stringent condition, since the the time step must be reduced proportional 10 Ax2and Ay2.
Computing a situation with wall turbulence requires an extemely fine grid near the wall 50
properly resolve the steep gradients there. In such a situation it is therefore practically
impossible to apply any scheme other than the fully implicit one if a vast number of time
steps is to be avoided. For a situation with varying coefficients and a nonuniform grid,
another way to treat stability is the rule!, that all coefficients in equation (4.25) are to be
positive. If this condition is violated, physically unrealistic solutions may arise. It can be
shown that the term in the wavy brackets on the left hand side of equation (4.25) is always
positive, regardless of the value of f]. However, it is also evident that the coefficient before
Op° may very well become negative for small values of f}. A remedy for this situation can

be formulated and is shown next.

4.3.2. Adaptve Time Integration Scheme

As pointed out above, the task is 1o have a time integration scheme which at each gid
Jocation is as close to a Crank-Nicholson scheme as numerical stability considerations will
allow. The condition for stability is that the coefficient in front of ¢pP is nonnegative. Due
10 the convective-diffusive formulation of the coefficients of the neighboring points which
we have adopted here, it is made sure that they are always nonnegatve. It can be shown
that the coefficient in front of ¢p is aiways nonnegative provided Sp is formulated properly.

The situation is more complicated for ¢p°.

An equation equivalent to (4.25) can be derived in the same manner as shown above if
one individual time integration factor is introduced for each control volume center and one

for each interface (see Figure 4.2).

1§ \'. Pawankar in “Numerical Heal Transfer and Fluid Fiow", Hemisphere Publ. Co., Washingion, 1980,
p 37
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Figure 42: Placement of time integration faciors for adaprive time integration scheme

For brevity, we will drop the index 1 in the following and define the subscript nb for

the conmol volume interfaces ¢, w, n, s. Then equation (4.25) takes the form
[o,+ {Ztag + ZF - 55,8V} ] 05 =
Y (fpangOng) + [ - { X0 )_% + Z(4F- (1-£5)538V } J 05 +

[,SAV + (1-,)S;AV + Z(1-£,y) (835 0np) (4.32)
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It may be pointed out here that in order to maintain interface-flux consistency, the

interface time integration factors are essential. This may be demonstrated in the following

example:

Consider two adjacent control volumes around the points W and P as

shown below.

w

WWw o] w o ¢

interface flux 3 fulw+ 1-£) J°

The integrated flux across the w-interface is fw Jw + (1-fw) Jw®,
regardless whether it is evaluated from the W or the P control volume. If,
instead, only fw and fp were employed, the flux atw evaluated from control
volume W would be equal to fw Ju + (1-fw) Ju® while the flux evaluated
from P would be fplu + (1-fp) Jw° . This inconsistency could lead to

physically unrealisic solutions.

The next task is to optimize the individua! time integration factors fp and fnp. We define
the coefficient in front of 0°, ago. as |
2% Z(1-fp)iyp * T(1-£)F- (1-fp)SpAVY

¢ (4.33)

where {np and {p are given an initial value of 0.5 corresponding to the Crank-Nicholson
schemne. Subsequently, for cach control volume, 8¢° is evaluated and fpp and fp will be

corrected if ac® is negative. The correction sought is

As .= TAf 2%, + ZAf F7 - AfSAV =max{0-2 ]
° nt"NB nb’ nb P PA ¢. 1nina! evalustion (4.33)
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so that when ag° is negative upon its first evaluation, it will be set 1o zero, and fp and
fnb will be adjusted correspondingly. When a4° is positive, no action is taken. To evaluate
the corrections of the time integration factors, we will assume that the correction applied
will be the same for all time integration factors associated with one control volume, Afyp, =
Afp. Then, we can solve equation (4.34) for Af as

]

- max[0,
Af, = Af | =

.‘8. initial evaluation

©
ZaNB +2XF. S,,AV

4.35)

The Af’s are evaluated for all control volume centers and interfaces in Q. This will
usually lead 1o a multiple evaluation of the interface time integration factors. For the actual
correction of the time integration factors, which is of the form fpew = finiial + Af, the
larges: correction will be taken. This will ensure that in no control volume the stability

criterion is violated. Based on our experience, the CPU time increase due to this scheme is

insignificant.

It has been argued that the interface time integration factors can be replaced by the

conwol volume center factors. Using
Z fnpaxp = fp I ang + Z(fnb - fp) anp

and TfwF=fpIF+Z(n-fp)F

one can asses the qualitative impact of such a measure by transforming equation (4.32)

(o)
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v+ fplZagg + IF - SPAVI] 6 + (20, - fp) yp + I - T Flop =

f,Za,p0np + & - (a-fp)(Zagy+ IF - SpAV)] ¢p +

£,SAV + (1-6,)S;AV + (1) Eagytyg + Kl - Nty - etra)

[£(f,,, - fp) axp + E(f,, - fp) F°) 6 (4.36)

It can be seen that the underlined terms containing the interface time integration factors
become negligible for ¢p = ¢3 . Oxp = Opg + dnp = anp A Fi= FS . This is generally
given for very small time steps, but for larger time steps the omission of those terms

inoduces a considerable numerical error whose consequences are not known.

Arguing that in an unsteady situation with sufficient time steps the coefficients will vary
linle, equation (4.32) could be simplified if the old tme coefficients aNg® were replaced by
the new time coefficients. While this measure seems advantageous from an economic point
of view, this would introduce another numerical error into the discretized equations. kt may
be pointed out that the old tme coefficients are readily available at the end of each time step
calculation. Since the time integration factors also depend only on knowledge of the old
time step, the entire term ag® can be efficiently evaluated at the end of each time siep.

Therefore, it is neither necessary nor desirable 1o employ this simplification.

4.3.3. The Pressure Equation

For incompressible situations, the continuity equation does not contain the the densiry.
The equation of state for an incompressible fluid only gives a relationship between pressure
and temperature. Thus, an explicit equation for the pressure is stll missing. In what

follows, we derive auxiliary equations for pressure. Furthermore, a so-called pressure
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correction equation is derived 10 correct the velocity field such that it satsfies the continuity
equation exactly. Both derivations are tied to the solution algorithm for pressure-velocity
coupling. The solution algorithm employed here is based on a proposal by Patankar and
Spalding (1972) and is of the SIMPLE type. The name “pressure correction equation” can
be understood from the development of the original SIMPLE algorithm. In the context of
the newer SIMPLER algorithm used here, this name is misleading since pressure is noz
correcied with this equation. For a review of other methods than the one used here, the
interested reader should turn 10 Patankar (1988).

It was shown above that the time integration scheme for the continuity equation does
not influence the final discretization equation for ¢. Therefore it may be postulated here that
the latest velocity field shall always séxisfy the continuity equation (i.e. fa=1). The

discretized continuity equation is then
a,- a7y + (puA), - (puA), + (pvA), - (pvA); =0 4.37)

This equation will now be transformed to yield an equation for pressure. Independent
of equation (4.25), (4.28) or (4.32), the discretization equation for the dependent variable

at one point in space can be writien as

Gp0p = Cx0p + By Oy, + OOy + 0 + B @38)

where the a's and P are obtained by comparison with one of the above mentioned

equatons. On this basis the u-velocity equaton can be written ai point e as!:

Qe = 2:anbunb +B+ flAe(PP'PE) + (l;fl )Ae(P;.P;) (4.39)

INote that the the cocfTicicnt ae represents the under-relaxed cocfficicnt if under-relaxation was done 1o the
u equauon before the pressure equauon is entered. The same applies 10 B and d.
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Here the pressure! has been taken out of the source term P and treated in the same
fashion as all other terms contained in S¢ 2, From this, an explicit equation for the velocity

at e can be obuained
0o =6, 10, PP + (14, d, (PP w0

with the definitions for the pseudo-velocity (

0 = zanb nb
" a. - (4.41)
Ae
and the quantity de = P (4.42)

Equation (4.40) can be used 10 eliminate ue and to inroduce P in equation (4.37). The

same can be done for the other velociges in equation (4.37). The resulting equation is the

pressure equation
aPp = & (g Py) + B (4.43)
where

op = £y (PA)y (4.44)

INote the double meaning of “P” here: the subscript P stands for the grid point, whereas otherwise P
denotes the appropriale pressure erm (cf. Chapter 2).

tization scheme and rewm 1o the

2From here on we will restnct discussion 10 a spatially uniform ume discre
ht forward but not needed as

subscnpt “17. A denvauion for an adaplive lime integration scheme is SUaIg
shown later



op=Z o (4.45)

B=al-a- Zf+ () aNB(P;B-P;) (4.46)

and If is defined equivalently to equation (4.9).

4.3 .4. The Pressure Correction Equation

After the velocity field is computed, it will satisfy the momentum equations, but not
necessarily the continuity equation. Thus a correction to the velocity field shall be derived
which ensures that it satisfies the mass balance exactly. Define a correction to pressure P

and velocity u as
P=P" +P 4.47)

p=u"+u (4.48)

and equivalenty for v. The starred quantity denotes the quantity after solution of its
wanspon equation, u' denotes the velocity correction sought and P stands for the
corresponding pressure correction. Equation (4.39) can also be written for the starred

velocity u*. Subtraction of this equation from equation (4.39) yields an equation for u’ as

aeu, = Z o u +f,APy-Py) + (1-1,) A(Pp-Pp ) e
However, the old pressure field is presumed to be the known and exact; hence there is
no correction for it. For simplicity, the first term on the right hand side is omitted. Now an

equation for u'e can be formulated:



v, =1, &, (Pp-Pp) €.50)

Similarly, for vp'

vy =1, dy (Pp- Py @51)

With equations (4.50) and (4.51), v’ and V' can be climinated from equation (4.48) and
its equivalent for v, and the resulting expressions for the velocities can be substituted into

the continuity equation (4.37). This yields an equation for the pressure correction P

a, Pp=Z apPrp + P (4.52)

where

=20.2 - LF
B=2a -2 IF (4.53)
and ang is defined as in equation (4.43). The sum TF* is defined analogously to
equation (4.9) where the individual flows are evaluated with the starred velocities. Note
that the right hand side of equation (4.53) is the continuity equation. In case of
convergence, B will tend to zero and is therefore a measure of convergence as will be

pointed out later.
4.3.5. The Velocity Correction Equagons

Based on equations (4.48) and (4.50) and knowing the pressure corrections, the

velociry filed can be corrected according to

=g+ £, d, (Pp- P (4.58)
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4.3.6. On the Correct Choice of the Time Integration Factor for the Auxiliary Equations

So far the pressure and pressure correction equations have been treated entirely
equivalent 1o the general ¢ equation. This treatment lead 1o the factor f in the definition
equations (4.44) of the neighbor point coefficients and in equations (4.54) and (4.55) for
the velocity corrections. A consequent treatment of S in the equations for u and v
introduces f} in equations (4.39) and (4.49). It seems natural that the same values for f;
should be used with the pressure and the pressure correction equations as with the general
¢ equauon. While implementing this scheme and testing it for laminar oscillating flow, this
was indeed done initially. However, a thorough inspection of the predicted pressure
showed large disagreement with the analytical pressure prediction for fully developed
laminar oscillating flow, even though the computed velocities were very close 1o the
analytcal ones. The disagreement turned out to be an oscillation around the sinusoidally
varying axial pressure disgibution. A number of tests have been carried out 1o examine the
influence of f) on the pressure prediction. It turns out that the best predictions are obtained
when (i) both, the pressure and the pressure correction equation are treated as fully implicit,
(11) the velociry corrections are done fully implicit and (iii) the pressure source term in the
momentum equations is treated as fully implicit (see also Fig. 4.4). This constitutes
essentially a "staggered grid in ime™. As in the space grid, the velocity “time grid” differs
from the pressure “time grid” unless a fully implicit scheme is used throughout. The code
was implemented according to these findings. Since the auxiliary equations will finally be
treated as fully implicit, the discussion above was formally carried out for locally uniform

time integration factors only.
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4.2. Solution Method

The set of algebraic discretization equations can be constituted one large matrix which
could be solved by a direct solver. For instance Kelkar (1988) used the Yale Sparse Marrix
Package to solve the flow and heat transfer around a square cylinder. While this has
advantages for the coupling of the equations, this technique would be inefficient since for
large matrices it is generally more economical to employ iterative techniques. Furthermore,
the equations are, in general, nonlinear. Even if a direct solver was used for the entire set of
equations, the coefficient matrix would have to be updated after each solution and solved
again, until convergence was achieved. The intermediate solutions during this convergence
are exact solutions only to a prcliminary coefficient matrix, which is an uﬁnecessary effor.
Also, an iterative technique offers more freedom to treat the source terms in the equatons.
Solving turbulent flow with a k-€ model involves the solution of two equations for always
positive variables. In the course of the solution for those variables it is very important that
their intermediate values never become negative. Intermediate negative values for k and €
would render their solution meaningless. A technique to prevent this is outlined by
Patankar (1980) and requires the freedom to formulate the source terms with flexibility.
This flexibiliry is not given in a direct solution scheme. Therefore it is clear that iterative

techniques are more suitable.

An iterative soluton method may be divided in two pans: First, the treatment of the
nonlinearity and the coupling technique bérwecn the individual physical equations, and
second, the solution technique used 1o solve a set of linearized algebraic discretization
equations. For the former, the SIMPLER algorithm (Patankar, 1980) was used with an
enhancement proposed by Reckienwald (1989). For the lanter, a technique was used which

proved 1o be robust and most economical. A discussion of these features follows.
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4.2.1. Solution of the Nonlinear Equations

For the solution of the nonlinear equations, the SIMPLER algorithm (Patankar, 1980}
was used. In this algorithm, the discretized differential equations are solved sequentially.
With the latest velocity, density and viscosity fields, the coefficient matrix of the pressurc
equation is determined and solved. With the new pressure field, the new velocity field is
computed. Next, the pressure correction equation is solved, and, with its help, the
velocities are corrected such that the corrected velocity field satisfies exactly the continuity
equation. Finally, the equations for the remaining dependent variables are solved. When
this is completed, the process is repeated a sufficient number of iterations until an overall
convergence is reached. These iterations will be termed “nonlinear™ iterations in what

follows.

Since the differential equations to be solved are in general nonlinear and coupled, it may
be necessary to under-relax their solution in order to achieve convergence. Examples of
under-relaxaton techniques can be found in Patankar (1980), Kelkar (1988) and
Recktenwald (1989). Generally, the sgronger two equations are coupled, the more they
must be under-relaxed. The degree of under-relaxation determines the speed of
convergence of a soluton. For the SIMPLER algorithm it is advantageous 10 have a similar
convergence speed for each equaton solved. An example of two srongly coupled
equations are the equations for the turbulent kinetic energy and the turbulent dissipation rate
in the case of turbulent flow. Recktenwald (1989) observed in his calculations that when
the solution of the p;'cssurc-vclocity coupling occurred much more rapidly than the soluton
of the k-€ coupling, the scheme diverged. It is the difference in under-relaxation factors for
the velocity and pressure equatons on the one hand, and for the k and € equation on the
other, not their absolute level, which is responsible for this divergence. Even seemingly
small differences in the values of the under-relaxation factors may effectively consutute
large differences. One remedy 10 this problem would be to set the relaxaton factors of all

dependent variables at the lowest necessary value. This, however, would be very
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wasteful. Alternatively, Reckienwald (1989) proposed an additional level of iterations in
which the stongly coupled equations (e.g. k and €) are solved repeatedly one after the
other, each time with updated coefficients. Afier a sufficient number of such extra
jterations, the SIMPLER algorithm is continued. This technique was originally introduced
especially for unsteady flow problems; it was tested during this research for steady
turbulent pipe flow and found that in sieady pipe flow this enhancement also speeds up the
nonlinear convergence considerably. A "sufficient number” of these iterations was found to
be typically between 1 and 5; 1 at the beginning of the computation and 5 near

convergence.

4.2.2. Solution of the Linearized Algebraic Equations

For each grid point and dependent variable ¢ an equation may be writien in the

linearized form

0,0, = Qp0p + 0y 0y + 000, + A+ B (4.56)

The coefficients a and B can be determined by comparison with equation (4.32). For a
fully implicit steady-flow scheme, the coefficients are identical to the ones given in
Patankar (1980). The coefficients of the equations for all grid points for one dependent

variable ¢ constitute a matrix A, so that the problem can be written as

Ai=b 4.57)

Many techniques for an iterative solution of this equation are available. Some have Bccn
tested during this work for their effectiveness. Spccia] care was taken to ensure that the
codes used could be fully vectorized. The codes ested were!

a) an unvectorized tri-diagonal matrix algorithm (TDMA) applied line by line

YFora general descripuon of the line by line method. see e.p. Patankar (1980).
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b) a vectorized, invered TDMA applied line by line

¢) a vectorized, invened red-black TDMA applied line by line

d) a vectorized TDMA line by line method using a Cray-SCILIB subroutine 10
evaluate dot products of vectors.

¢) a vectorized SSOR algorithm

The test problem was 8 steady turbulent pipe flow on a 23 by 23 grid. The vectorized
SSOR algorithm proved to be extemely sensitive to the correct choice of the over-
relaxation factor. For an over-relaxation factor greater than 1.2, the solution diverged
independently of how accurately the equations were solved. The other four methods gave

the following performance in CPU time based on the first method:
a) 100% b)45.5% c) 66.7% d) 81.2%

The difference between b), ¢) and d) can be explained by the varying influence of the
relative shon vector lengths (21 elements). Method b) and c¢) should break even when the
vector length is greater than 128, given the present vector length of 64 words on the Cray
2 computer. Similarly, the use of the SCILIB subroutine pays only for very lafgc vectors.
The accuracy’! of the solution achieved afier a fixed sweep through the domain was highest
for method a) and about the same for b), ¢) and d). Due to the coupling and nonlinearity of
the physical equatons, only a limited accuracy is needed for an intermediate solution. With

this in mind, method b) was used for further work.

Other, more sophisticated methods like preconditioned conjugate gradient methods
might lead 10 increased efficiency and accuracy. However, the optimizaton of the solution

algorithm was not the subject of this research.

How accurately shall the linearized equations be determined? When can the overall

solution process be terminated? These questions will be discussed next.

Imeasured in terms of the residual Gmax Which1s defincd below
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4.2.3. Linear, Nonlinear Residuals and Convergence

The residual of the linearized discretization equation (4.56) can he expressed as

Kl 1 k 1
fpelogbg b oo, (4.58)

where angk, apk, and X are the coefficients af the linearized equations at a nonlinear
iteration k, xg!, ¢p' are the values for the linear iteration | within the solution algorithm.
'r"g is the residual corrcsponding to k nonlinear and 1 linear iterations. However, the
absolute value of 7% does not give a sure determination of whether the residual of an
equation is small. We require that the value of T rp be small compared with a.p ¢p
(frequently the largest contributor in the sum on the right hand side of equation (4.58)).

Therefore we scale each residual to determine its relative importance and define

ikl
] P
,; ® al ¢)
PYpP 4.59)

This scaling normalizes the coefficient matrix with respect to their diagonal elements.
This scaling form offers the advantage, other than described in Reckienwald (1989), that
the values at a particular point in the domain can be prescribed without rendering the
residuals meaningless. The prescription is typically done by assigning a huge number to

coefficient ap and assigning this huge number times the desired value to coefficient .

Since there is one r‘,‘,] for each nodal point in £2 and dependent variable ¢, we define a
residual vector _R’#; which contains the individual residuals as coordinates. The Euclidian

norm R,',‘Q' of the vector is a measure of the overall error of the computed solution of ¢ in Q,
R JEIR, = | z (x*‘
all grid points (4.60)
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During consecutive linear iteraions within the solution algorithm, the coefficients
remain constant and, in the limit, Rl‘,‘; will approach zero. However, it is uneconomical 10
drive the residual 1o zero at this point because the equation solved is only the linearized
form of the actual, nonlinear equation. A perfect solution for the linearized equations may
still be far away from the solution of the nonlinear equations. The criterion 10 determine

whether Rl‘,‘; is small enough to terminate the linear iterations was

k!

R
Pe
-—“-0-580

Po (4.61)

where R]';g is the so-called nonlinear residual, and &g is some, user specified, small
number. Reckienwald (1989) and Van Doormaal and Raithby (1984) have discussed the

choice of 8 in detail. Here, 8¢ was chosen between 0.1 and 0.3.

Afier completion of the lincar solution of one dependent variable, this process is

repeated for the other dependent variables.

Table 4.2: Typical Values of 8¢ in the compurations

o u v pc P
de 03 |03 }]015}(015]02 0.2

The nonlinear residual R]'ig is obtained by evaluating equation (4.39) upon entering the
solution algorithm with the latest set of coefficients. The series of the nonlinear residuals,
R;g. from one nonlinear iteration 10 the next is an excellent measure of the overall,

nonlinear convergence of a variable ¢. If this number becomes small enough (e.g. 10%) for
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all dependent variables, then a solution at this time step is obtained and one can proceed

with the next time step.
Another measure of nonlinear convergence is the maximum scaled error of the

continuity equation, Gmax. t any point in £2:

max [ abs| a -a)+IF 1]

Omax = . - -
max = maximum flow rate across any control volume interface in Q

(4.62)

When Gpmax reaches a value of less than 104, reasonable nonlinear convergence is
generally obtained. In fact, Gmax is probably the single best overall measure of
convergence. The nonlinear residual for the u-equation and smax are strongly correlated so
that usually it suffices to monitor only Gmax. However, it proved useful 1o monitor the
nonlinear residuals for the k and € equations, because it is possible to reach an intermediate
solution for which the continuity equation and the momentum equations are rather well

satisfied but for which the k and € equations have not yet reached convergence.

4.3. Summary

In this chapter, the general discretization equations were developed. A locally adapuve
tme integration scheme was developed which will be especially helpfﬁl in situations with
wall trbulence where highly non-uniform grids are usually used. While it is more
elaborate 1o implement this scheme than a fully implicit scheme, the additonal CPU time
cost is marginal. An enhanced SIMPLER algorithm for the treatment of strongly coupled
equations was outlined. A vectorized line-by-line method was found 10 be a robust and
efficient solver for the linearized equations. Criteria fbr the linear and nonlinear

convergence are established and discussed.
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PART I1: ANALYSIS AND RESULTS OF THE FLUID MECHANICS PROBLEM

5. PREDICTIONS OF FULLY DEVELOPED TURBULENT PIPE
FLOW UNDER STEADY CONDITIONS

In order to verify both the turbulence model itself as well as its programming, 8 series
of computational tests were made to compare the predictions for fully developed pipe flow
ar two different Re numbers. One of the benchmark papers on turbulent pipe flow is that of
Laufer (1954), where the detailed characteristics of the flow a1 Re numbers of 50,000 and
§00,000 are investigated. Both, the trbulence model of Jones and Launder (1972) and the
model of Lam and Bremhorst (1981) were tuned 1o match the set of data provided in this
paper. To verify our solution at high Re nurﬁbers. predictions a1 Re = 50,000 are compared
with the data of Laufer (1954). The paper by Kudva et al. (1972) provides data on pipe
flow a1 Re = 6000, which will be the second Re number for our test.

5.1. Predictions of the High-Reynolds Number k-¢ Model

The high-Reynolds number model (HRN) computations were done witha 23 by 23
grid with a finer mesh near the wall. The L/D ratio was 150 for all computations. Figure
5.1 shows the predictions for Re = 50 000. It can be seen that the predicied normalized
velocity is consistently too high. But since rather few grid points were used here, this
effect may be due in pan to the grid size. From Fig. 5.7 it is clear that the use of the HRN

wrbulence model for a Re number as low as 6000 is inappropriate.
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§.2. Predictions of the Low-Reynolds Number k-¢ Model

The low-Reynolds number mode! (LRN) computations were made with a 33 by 51 grid
with densely spaced grid points near the wall. For a Re number of 50 000, ca. 7 grid points
were placed within the viscous sublayer (y* £ 11). For Re = 6000, this number was 17.
The L/D ratio was 150 for Re = 50 000 and 250 for Re = 6000. Figure 5.1 shows that the
computed data generally follows the law of the wall, but underpredicts u* slightly. This is
due 10 a slightly 100 high ug which in tum may be artributed 10 the relatively small number
of grid points in the viscous sublayer. Figure 5.2 compares the computed local friction
coefficient ¢y for Re = 5.0x104, and a TI (turbulence intensity at the inflow) of 10%, with
the experimental value for fully developed flow. Thereafier, the incoming slug flow
develops swiftly as the rapidly decreasing cr indicates. The minimum at about x/D=10
corresponds to the beginning of the development of the turbulent flow structure. The fully
developed value is slightly higher than the experimental value. Figures 5.3 and 5.4 show
fairly close agreement of the measured and predicted turbulent kinetic energy. Figures 5.5
and 5.6 show the comparison for the turbulent dissipation rate. In Fig. 5.6, the predictions
are compared with Laufer's daia as shown in the paper by Lam and Bremhorst (1981) as
well as with Laufer's data as taken from the the original paper by the present author. There
is no explanation for the disagreement of the two sources. However, the predicted data is in
satisfactory agreement with Laufer's data. Fig. 5.7 compares the predictions with the data
of Kudva (1972) and the law of the wall. As can be seen , the experimental data a1 Re =
6000 does not follow the logarithmic law of the wall. The measured data lie consistently
above the log law. The predictions correctly reflect this trend. As in the case for Re = 50
000, the predictions slightly underestimate the normalized velocity. Finally, Fig. 5.8
compares the predictions for the wrbulent kinetic energy. Since Kudva et al. (1972) only
repon data for u'2, k can only be estimated from it. Fig. 5.8 shows one such estimate
using the same ratio of u'2/ k at each radial location as in Laufer's data For completeness.

also Laufer's daia are shown. The prediction are in between the experimental curves.
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Fig. 5.3: Turbulent kinetic
energy for fully developed
turbulent pipe flow at Re =
50000.

Fig. 5.4: Turbulen: kinetic
energy for fully developed
turbulent pipe flow at Re =
50000 near the wall.
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Fig. 5.5: Turbulen: dissipa-
tion rate for fully developed
turbulent pipe flow at Re =
50000.

Fig. 5.6: Turbulen! dissipa-
tion rate for fully developed
turbulent pipe flow at Re =
50000 near the wall.
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6. TRANSITION PREDICTIONS

In oscillatory flows at sufficiently high Remax numbers, the flow repeatedly undergoes
transition from laminar to turbulent and vice versa. The actual Reynolds number at which
wransition occurs under those conditions is surely influenced by acceleration or deceleration
effects and is most likely not the same as the critical Reynolds number for steady flow in
smooth pipes, 2300. Even though our goal is to predict wrbulent oscillatory flows, it is
clear that a turbulence model which cannot predict transition for the much simpler case of

steady flow has no promise of predicting transition in oscillatory flows.

The objective of this chapter is to investigate the proposed turbulence model for its
ability to predict transition in steady and in accelerated pipe flow. This chapter presents the

results of a series of computations which examine primarily the following four questions:

1) Atwhat Re number is transiton predicted for fully developed steady flow?

2) What is the influence of the inflow boundary conditions for k and € on the
prediction of this ransition?

3) What is the entrance region prediction for moderate Reynolds numbers (<10000) ?

4) How do the predictions compare with experiments?

5) How does acceleration affect 1h£ predicgons?

6.1. Experimental Observations of the Entrance Region

It is well known that the hydrodynamical entrance length in laminar pipe flow is
x/D = 0.05 Re

However. there is not a consensus on the enance Jength in turbulent flows.

Commonly. we speak of enzance length as that distance from the eny along the flow
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direction where the velocity profile changes. Wang and Tullis (1974) distinguish 3 different
lengths:

1) The length at which the wall shear stress becomes fully developed.

2) The length at which the boundary layer reaches the centerline.

3) The length at which the centerline velocity becomes fully developed.
According to Nikuradse (1932), the entry length is nearly independent of the Reynolds
number and is 40 to SO diameters. This is in good agreement with the findings of Wang
and Tullis (1974) who measured an x/D of 49.5. Deissler (1950) reports that the flow at the
centerline was stll developing at x/D=100 for a rounded entrance. He also found that the
flow close to the wall developed to its final form over a shorter distance from the entrance
than required by flow in the center. In a later paper (1955) he quantifies this finding stating
that the friction (factor) is approximately fully developed after 10 diameters. Bowlus and
Brighton (1968) verify this and in addition give an analytically derived relation for the

velociry entrance length as
x/D = 14.25 log10 (Re) - 46.0

In one of the benchmark papers about turbulent pipe flow Laufer (1955) measured fully
developed flow in a round pipe at a location of circa 50 diameters. And, based on his

review of literature, Truckenbrodt (1980) states the following average relationship
x/D = 0.6 Re0-25 .

This overview clearly shows that the “length of the entrance region™ in fully turbulent
pipe flow is debated in literature !. It is not surprising that for ransitional pipe flow even
less is known about the entrance length of the flow. A detailed comparison of the entry

length computations with experiments was therefore not attempted.

1 One reason may be that different rescarchers had different boundary conditions for k and €. which are not
normaliy reponed or even measurcs.
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The computational domain was chosen to be a straight tube with L/D S 500. In view of
the discussion above, this was considered 1o be long enough to ensure that fully developed
conditions always exist at the end of the tube. Even if the model were 0 predict laminar
flow for a high Reynolds number, the flow would be fully developed at the end of the pipe
for Reynolds numbers up 10 10000.

6.2. Boundary Conditions at the Inflow

For isotropic turbulence, the turbulence intensity at the inflow can be defined as

4

Te (6.1)

Umean
The specification of a wrbulence intensity at the inflow boundary poses no problem.
However, the specification of the incoming turbulent dissipation rate € is 8 problem.
Generally, data about k and € at inflow are not reponted by experimenters’. Therefore,
assumptons have to be made and their impact on the predictons should be assessed. One

option of specifying €ip 1

Lok
e =lp=
" B (6.2)
where { is some function to be determined. It is evident that { is like an inverse
rbulence Reynolds number Rey
K’ (6.3)
RC‘-’— P E-E :

1 See e.g Laufer (1955, Nikuradse (1933), Deissler (1950)
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From the definition of the isotropic turbulent viscosity we know that

c, P k2
e (6.4)
€= Y
It is clear that with increasing Re also y; will increase. Therefore we use
(Re)p K
€ =[(Re)p~
" . (6.5)

and we define {(Re) as 1A~Re. This will give a turbulent viscosity at inflow of

W=vdRe c,p (6.6)

At a Re number of 105, this will lead to a turbulent viscosity of 90 times the laminar
viscosity, whereas for a Re of 10 000, this value is 9. Around the critical Re number of
2300 the inflow turbalent viscosity will be of the same order of magnitude as the laminar
viscosity. If Re is further decreased, the numerical turbulent viscosity at the inflow will
become less and less imponant compared to the laminar viscosity. This, of course, is what

we require from physical intuition.
Another option in specifying €;p, is to assumne that at inflow, the rate of production of
turbulent kinetic energy is in equilibrium with its dissipation rate,
G=¢ 6.7)

The production rate is defined as

ou. [}
GE—UZ ‘—_':—__.

3 (6.8)



A simple closure for Tis

=,
‘t=u‘(-5;:+'5;:)

Near the wall
oy,
1= 10 = “15;
)

Defining the friction velocity as

ue? = 1/p

we get

(®)
"
| =
L)
%
FE

The model for the isotopic turbulent viscosity is

2
ut=cpp¥€-

With this, equation (6.10) becomes

Eliminating € with (6.7) and (6.1 1) vields
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U= c'po.zs k0.5 (6.15)

Combining (6.4) with (6.10) and (6.14) yields

€=¢ K’ aF'
ur %% (6.15)
Using the universal law of the wall, we get
c3_75 kl .5
€= —K)'-—
in (6.16)

The choice for yjp, is either one representative length scale for the inflow (e.g. the
radius of the tube) or the distance to the wall. This, however, will lead to a singularity of €
at the wall and a rather low value at the centerline. As a consequence, the turbulent

viscosity at inflow will peak sharply in the center and be very low near the wall.

A third way to specify € is to infer the nature of p; from experimental data for fully

developed pipe flow. Thereafter, the friction velocity can be expressed as

v, { 0.197 Re®¥" Re < 410"
Uy =

* D L0151 Re® Re>4:10° 6.17)
From Schlichting (1980), V{ max/(ug R) = 0.09 = ¢;.

With (6.17) this can be rewnitien as

{ 0.1 Re%®7% Re 54'10'1
B =¢
U 0,076 Re®? Re > 4-10° (6.18)
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In order 1o have i as a funcdon of the turbulence intensity at the inflow, we define

0.875
p,=c,HTIRe (6.19)

which gives a function { when put into (6.2) of

{(Re) =

Ti Re%®"8 (6.20)

It is this formulation that we have adopted for the LRN computations.

6.3. Transition Predictions of Quasi-Steady Flow

The high Reynolds number version of the k-€ model cannot account for any mransitional
effects. It incorporates only the wrbulent viscosity and neglects the influence of the laminar
viscosity entirely. This is the major reason why a high-Reynolds number turbulence model

is not used in this study.

Contrany 10 the high-Reynolds number turbulence model, the LRN version can
potentally predict transion to rurbulence and relaminarizaton since it takes the effect of the
molecular viscosity into account where necessary. It has been shown (Jones and Launder
(1972), Launder and Spalding (1974), Schmidt and Patankar (1987)) that low Reynolds
number models are capable of predictng zansition, at least qualitatively. Schmidt and
Patankar (1987) investigated the prediction performance of the models of Jonesand
Launder and of Lam and Bremhorst in steady flow over a flat plate. They found that the
starting location of transition was predicted 100 early and that the length over which
transition occurred was underpredicted. Jones and Launder (1972) repon the performance
of their turbulence model for fully developed pipe flow. It can be seen that their model
predicts transition at a 100 Jow Revnolds number of 1600 as well as a 100 narTow range of

Re over which the ansitional state of the flow prevails (Figure 6.1).
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In this study, two series of ansition tests were performed, one for 10% wrbulence
intensity, another one for 0.5%. Most of the tests were performed with a grid of 33*51
grid points, where the axia) grid lines were equally spaced and the radia) grid lines were
densely spaced near the wall. This grid was sufficient for the moderate Reynolds numbers
under investigation and still provided reasonable convergence rates (as compared to larger

grids).

In the following, we define transition of the fully developed flow as the point when the
computed friction coefficient at the downstream end of the pipe stans to deviate from the
corresponding laminar value. According to this definition, both tests give the same result
independent of the wrbulence intensity at the inflow and are in line with the findings of
Schmidt and Patankar (1987) for transition predictions for flow overa flat plate and Jones
and Launder (1972) for fully developed pipe flows. Figure 6.2 shows the results of the
friction coefficient computations as well as the measurements of Nukuradse (1932). As can
be seen, transition is predicted at a Re number of 3450 which corresponds to the upper end

of the Re-number transition range shown by Nikuradse.

The Re number range over which wansition is predicted is much smaller than measured
for example by Nikuradse (1932, ca. 2 Recr). Atone point in the sequence of
computations, the predicted cf values jump suddenly from the laminar values of 16/Re 102
wrbulent value when the Re number is increased slighty. This does not properly reflect the

real intermittent Transition process which occurs over a rather broad band of Re numbers.

One must bear in mind that the results shown in Fig. 6.2 are obtained for L/D ratios of
up 1o 500. In a Strling en gine heat exchanger, and in the experimental test rig for
oscillating flow research at the University of Minnesota, the L/D ratio is much less. Itis
therefore of great practical interest to examine the predictions of the mode] with regard to
the developing flow. For low turbulence intensity levels at the inflow, the usual laminar
flow behavior with laminar entrance length and parabolic fully developed profile is

predicted upto a Reynolds number of 3450. At high Re. the flow will first develop asina
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laminar flow. At some point downstream, the flow will become unstable and undergo
transition from laminar to turbulent. Since this transition takes place over a very small axial
distance, we will speak of a zransition front. One example of such a transition front is
shown in Fig. 6.3. Further, it is interesting to note that the predicted transition occurs
simultaneously over the cross section. The location of this transition front depends largely
on two factors: (i) the level of rbulence intensity at the inflow (TT) and (ii) the Reynolds

number.

Turbulence intensity dependence. As the turbulence intensity is decreased, the
transition front moves downstream . In the limit of a very low turbulence intensity the
transition front approaches a8 maximum downstream location and does not move any further
(see Fig. 6.4). This can be explained from a physical or numerical point of view: In
additon to the imposed turbulence intensity at the entrance of the tube, in real pipe flow
there are always disturbances downstream. If the Re number is sufficiently high, these
disturbances will cause the flow 1o become unstable even if extreme caution is exercised 10
have a very low level of turbulence intensity at the inflow. Numerical approximations also
act like physical disturbances. Even if we wurmn off the imposed turbulence intensity, there
will be a residual level of "numerical disturbances” in the domain which will cause
wansiton. A lower turbulence intensity also makes the transition front steeper, more

abrupt.

—

As menuoned above, the results for the fully developed flow are independent of the
wrbulence intensity at the inflow. However, in the developing region in the ransitional Re
number range thc'mrbulcnce intensity level has a decided effect on the flow for most of the
length. At Re = 3450, the flow well downstreamn will be predicted ultimately 1o be laminar.
For a Tl of 0.5%, the flow follows a normal laminar behavior throughout. Increasing the
T1 a1 this Re number creates a region where the flow Jooks very much like a turbulent flow
over much of the tube length. For example, a T1 of 10% will lead 10 a seemingly fully
developed wrbulent profile at an x/D beyond 100, but at x/D = 250, the flow suddenly
relaminarizes (Fig. 6.5 and Fig. 6.6). This implies that, contrary to the fully developed

‘e



Fig. 6.3: Transition fron example for a Re number of 6000 and a wurbulence intensity al

inflow of 0.5%.
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case, the developing region of the flow at moderate Re is swongly affected by the boundary

conditon at inflow.

Reynolds number dependence. As the Reynolds number is increased, the
wransition front moves upstream, Fig. 6.7. At higher Re numbers (e.. >5000) and not 00
Jow turbulence intensities (e.g. >2%) the transition front can hardly be seen any more.
Then, transition takes place practically instantaneously at the entrance of the tube. This is
probably the reason why the existence of such a transition front is not mentioned in any of

the reviewed experimental papers on turbulent pipe flow.

An interestng situation occurs around the nominal value for transition for the fully
developed flow. When the Re number is decreased further, the transition front moves
downstream. With very low turbulence intensity at inflow, the location of the transition
front stands at an x/D of around 300 for Re = 3470. When the Re number is lowered
further to 3460, the transition front hardly moves downstream any more, and immediately
afier the front the flow starts 1o relaminarize, Fig. 6.8. The final profile at this Re number
Jooks very much like a normal laminar profile. Here, the transition front looks like a “cut”
into a laminar flow. Lowering the Re number even further just reduces this “cut" until it

completely disappears at Re = 3450.

Initial guess dependence. At very low inflow turbulence intensities, the predicted
location of the wansition front is also affected by the choice of the initial guess for k and €
in the computatonal domain. Here, the initial guess for k is under investigation. A typical
initial guess for k and € inside of the computational domain is just like the specification of k
and € at the inflow. For the results shown in Fig. 6.9, the inital choice of the turbulence
intensity inside of the domain was varied while the Tl at inflow was held constant. The
results can also be explained with the action of "numerical disturbances” as above. Each
initial guess also represents an initial error and Jeads 10 a partcular level of numerical
disturbance. In the near vicinity of mansition, both the laminar and wrbulent solutions for

the equations are permissible and equally likely. In reality, such a situation would be
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Fig. 6.9: Initial guess
dependence of the prediction
of the transition front for low
turbulence intensity at inflow
(0.5%) and Re = 6000:
normalized centerline velocity

vs. axial distance.

Fig. 6.10: Initial guess
dependence of the prediction
of the transition front for
higher turbulence intensiry ai
inflow (2% ) and Re = 6000
normalized centerline velocity

vs. axial distance.
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observed as intermittent. In this test we simulate a steady state situation, and the program
finally must decide on one¢ particular solution. Since both solutions are equally likely, the
decision 10 converge in one way or the other may be influenced by small disturbances,
which may very well be the ones resulting from the initial disturbance. At higher trbulence
intensities, this effect is practically unnoticeable (see Fig. 6.10). It should be noted here
that during the course of this research the convergence speed of the program was increased
dramatically by various measures. This, however, changed the inherent numerical
disturbances such that earlier results with slower convergence could not be recreated

exactly with the enhanced version of the program.

Domain and grid influence. In this work it was also verified that the existence and
Jocation of the transition front is not a grid or outflow-boundary effect. It was found thata
cenain minimum number of radial grid points is needed to predict the front, but beyond this

number, the front was predicted consistently at about the same location (Fig. 6.11).

Discussion. It is worthwhile noting that the transition front can exist at locations
where the flow should be fully developed. Even though there is disagreement over the
length of the turbulent entrance, it is clear that spatial transition at low T1 occurs after this
“entrance region”. For the nominal, fully developed transition Re number predicted, the
laminar wansition length is 172.5; the transition front for Re = 3460 develops only at
around x/D = 300. These findings suggest that at Jow Re numbers.and low T1 the entrance

length is much longer than previously assumed.

The results of this study suggest that the wransition process in a finite pipe must be
described by two parameters, Re and xr/D. where x/D is the transition front cross
section. Or, aliemnatively, the number of parameters can be reduced by adopting the notion
of an external boundary layer and working with 2 momentum thickness Reynolds number.
However, speaking of the transiton is misleading because there is spatial transiton from a
Lagrange point of view, and there is ordinary transition from an Eulerian point of view

very far down the pipe which depends on the Re number only.

99



20

ﬂ.'} v —y
. k. so0
. D
33 by 4l grid
©_
L-.'m ,
: . 33 by 51 prid
2_ )
L_ / :
£ tw
- 33 by 61 grid :
el
o
0.0 1000 2000  300.0 4000  $00.0
x/D
o
™~
L .
= » 250, 33 by S grid
© '.’/D
B L . 450,33 by 51 prid
©_
E L 250,19 by 51 grid
S D
o)
> d
2-
L i
o= 150,33 by 51 grid
o
0.0 100.0 200.0 300.0 400.0
x

Fig. 6.11: Domain and grid influence on the predicied location of the transition fron:

normalized centerline velociry vs. axial distance. Top: Influence of radial grid a: Re =
3500. Bottom: Influence of axia! grid at Re = 6000.TI = 05%.

100



Conclusions. For developing and fully developed pipe flow, qualitatively and
quantitatively correct wansition predictions can be made by the Lam-Bremhorst form of the
LRN k-¢ turbulence model, but the gransitional Re number range is 100 BAITOW. Even
though the prediction for the fully developed flow is insensitive 10 the turbulence intensity
at the inflow, the developing region is very sensitive to it with regard to transition. Since
the practical applications--which we are uldmately interested in—-will limit the situations to
mostly developing flows, we can say that for this model, transition in the developing
region can be tiggered by the choice of boundary conditions for k and €. This is very
desirable in light of the findings of Seume (1988) who concluded that transition in
oscillating flow is often determined by the state of the fluid before flow reversal. This fluid
might have been outside of the computational domain at flow reversal and might be entering

the domnain during the computation.

6.4. On the Reproducibility of Transitional Steady Flow Results

Most of the results shown in chapter 6.2 were produced with a 33*5) gnid, the same¢
grid as used for the first computation of oscillating flow with a LRN turbulence model. It
was shown that the initial guess fork and € does have an effect on the prediction of the
Jocation of the transition from (Fig. 6.9) It had been found that a minimum number of
radial grid points is necessary 10 predict spatial mransition and that, generally, more radial
grid points shift the transition front to lower x/D’s (Figure 6.1 1a). However, the exisience
of a transition front seems 10 be independent of grid and domain effects, as longasa
sufficient number of grid points are taken. A close look at Figure 6.11 shows that these
conclusions were drawn at Re numbers of 3500 and 6000, both above the predicted |

“critical” Re number of 3450.

Matters are more complicated a! the critical Re number of 3450: The findings of Figure
6.5 are quite reproducible for the exactly the same conditions (i.e. initial guess, gnd. Tl

etc.). However, it was found that, for a2 Tl of 2% and a finer grid of 63 by 63 gnd points,
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the relaminarization of Figure 6.5b could not be reproduced. Rather, the flow would
converge to & fully irbulent situation (Figure 6.12)! To test the stability of the coarse grid
solution (33 by 51, Fig. 6.5b), it was transposed on a 63 by 63 grid and served as the
initial guess for a continuation of this solution with the fine grid. The results of this
continuation are identical to the initial guess and the solution does not change (Figure

6.13). Vice versa, the results originally obtained from the fine grid solution (63 by 63)
were transformed 1o a coarser grid (33 by 51) and used as initial guess for a continuation of
this solution on the coarser grid. Similarly, the results were identical to their initial guess,
and no spatial relaminarization was predicted (Figure 6.14). This leads to the conclusion
that a continuation of a converged solution obtained with one grid will not change these
converged results independently of the grid used in the continuation. Additional
computations (no continuations) doﬁc with a 51*51 grid and a 33 by 63 grid did not predict
the relaminarization of Figure 6.5b (Figure 6.15).

Table 6.1: Grid influence at “critical” Reynolds number of 3450

Re T1 gnd continuation of relaminarization  Figure
other grid predicted?
3450 2% 33+51] - yes 6.5b
3450 2% 33+51] 63*63 no 6.14
3450 2% S51*51 - no 6.15
3450 2% 33%63 - no 6.15
3450 2% 63*63 - no 6.12 |
3150 2% 63%63 33#5] yes 613

For a Tl of 0.5%, the 33 by 51 and 51 by 51 grids predict fully laminar flow, whereas
the 33 by 63 and 64 by 64 grid predict fully developed turbulent flow (Figure 6.16). These
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findings clearly show that there is a severe grid influence on the predictions at the “critical”
Re number of 3450.

Figure 6.17 shows another influence: both velocity profiles are computed for the
exactly same conditions, except for the under-relaxation factors for k and €. It is evident

that the loci of the transition front are not identcal.

The next consideration was whether qualitatively siuﬁla: results as described in chapter
6.2 (c.g. at a somewhat different Re number) are predicted for a finer grid (64 by 64). A
number of computations determined that the new Recr64°64: it was found to be at Re =
2985 (Figure 6.18). However, at Re = 2990, the flow underwent a “normal” spatial
wransition at around x/D=400, whereas at Re=2885 a transition did not occur. A

relaminarizatdon of the flow as shown in Figure 6.8 for 3460 was not detected with this

gnd.

Table 62: Predictions at around Re = 2985

Re Tl gnid fully developed flow prediction
2985 0.5% 33*51 laminar

2985 0.5% 64%64 laminar

2985 0.5%  50%91 laminar

2990 0.5% 33' 51 laminar

2990 0.5% 64*64 turbulent

2995 0.5% 50*91 | " laminar

The gnd independence of the new critical Re number Recrpav64 Was checked by again
changing the gridto a finer radial grid and 2 slightly coarser axial grid (50 by 91 gnd
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points). Two computations at Re numbers of 2985 and 2995 did not predict transition for a
Tl of 0.5% (Figure 6.19).

At the new “critical” Re number, the influence of T1 was studied. While for a Tl of
0.5% the flow is laminar throughout, a T1 of 10% causes the flow to undergo transition 10
turbulent without spatial relaminarization. This means that for the 64 by 64 grid the Tl
boundary condition does influence predictions for the fully developed regime. This is a
clear contradiction 10 the staternent made earlier, i.e. that the T1 does not influence the fully
developed regime (Figure 6.20).

It is interesting to see how a predicted solution changes if the Tl is varied suddenly. For
this, the converged solution of Re = 2985, Tl = 0.5% (64 by 64 grid) was taken as initial
guess for a computation with T1 set to 10%. The result of this computation can be seen in
Figures 6.21 and 6.22 as a function of the number of iterations. As one sees, the laminar
portion of the flow is slowly pushed out as the iterations proceed, or--altemnatively--with
time, the flow in the pipe will become turbulent when all of a sudden the low turbulence
intensity at the inflow is replaced by a high one. Aliernatively, if the converged solution for
Re = 2985, Tl = 10% is taken as an initial guess for a computation where Tl = 0.5%, the
gr;:atcst pant of the flow remains turbulent. The laminar portion of the flow near the
entrance of the pipe is extended only slightly due to the sudden decrease of the disturbance
level (Figures 6.2] and 6.23).

Conclusions:

1) Inthe transitiéna] Re number range the results of chapter 6 are
- qualiwatively valid.
- Quantitatively valid only for the very conditioﬁs for which they were established (e.g.
a 33 by 51 gnd, specific undcr-relaxaxioh factors, etc.).

2) Transiton in the fully developed regime as well as spatial transidon is influenced by

numerical disturbances which in tum depend on grid, under-relaxation, initial guess for

108



the various variables, etc.. Therefore there is no one typical transition performance of
the k-¢ turbulence model.

3) For lower and higher Re numbers, the predictions are valid and unambiguous.

4) The performance of the wrbulence model reflects the physics insofar as two solutions,
namely the laminar and the wrbulent one, become equally likely around transition and
“compete” for dominance.

5) For about the first 100 diameters downstream from the pipe entrance the contradiction
with regard of the sensitivity of fully developed flow to T1 does not have severe
consequences. This region is definitively affected by the T1 as shown by all

computatons.

6.5. Transition Predictions of Constant Acceleration Pipe Flow

The next logical step to check the performance of the k-€ model regarding ransiton 10
turbulence is 1o apply it to this physical situation: A fluid in a long pipe is initially at rest. At
tme = 0, the fluid is accelerated at a constant rate. As the Re number increases, the flow
will undergo transition at a Re number higher than in quasi-steady flow. This situation was
experimentally invest gated by Lefebre and White (1987). Comparison of the numerical
predictions with the experiment allows the turbulence model 1o be tested for acceleration in
a ransitiona! situation. Although this experiment has much in common with the accelerating
phase in oscillaing flow, there is one major difference: Here, the flow before transition is
absolutely undisturbed, and the disturbances develop only at ransition. In oscillating flow,
there is some level of residual turbulence before transition which will most probably trigger
ransition carlier than seen here. While we may expect to see some grid dependence for the
situation considered in this chapter, this dependence will be significantly smaller in

oscillating flow because of the residual turbulence.

The goal of this study is to determine how well the turbulence model predicts transition

1o turbulence in accelerated pipe flow.
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Fig. 6.17: Predictions for Re = 3450 and Tl = 0.5% for various under-relaxation

Jaciors a Top: a; = ag = 0.5, bottom: a; = ag = 0.7.
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Fig. 6.18: Influence of the
Reynolds number on the
location of the transition front
for 0.5% TI at inflow:
normalized centerline velocity

vs. axial distance.

Fig.6.19: Grid dependence
of the critical Re number
obiained or. the 64 by 64 grid.
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Fig. 6.20a: Predictions at
Re = 2985 for different levels
of Tl at inflow. Tl = 05%.
64 by 64 grid.
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Lefebre and White (1987) used a 30 m long test section (ID = 5 cm) with water as the
working fluid. The flow was accelerated from rest 10 9 or 11 m/s with accelerations
between 1.85 and 11.8 m/s2. Their LDV and surface shear stress sensor measurements
showed that the flow underwent transition throughout the test section at practically the same
time. An acceleration parameter was defined as

[ dum(t)
as well as a dimensionless time
e 62

In their experiments, the ransitions times ¢ reporied are from 0.00105 to 0.0032. The
acceleration parameter at ransition was nearly constant for the experiments at Ky ir =

1.53x10-8. However, during the acceleration, this parameter changes due to its definition.

Computations have been made for the same non-dimensional situation as in the

experiment. To translate the dimensionally given acceleration data of Lefebre and White, 2

non-dimensional acceleration was defined as

. 2 p2 R3 dUm(‘)
Kﬂ & “2 di (6.23)

Since dU/di was constant for each experiment, this parameter remained constant during
acceleration. Using the property data of water and the ID of the experiment, the non-
dimensional acceleration could be detcmmined for different cases 1, Il and III. Case I is set
arbitrarily to a very low acceleration, case Il corresponds to the lowest experimentally

investigated level and case I11 1o the highest investgated level of acceleration. As will be
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Table 6.3: Results of accelerated pipe flow computations

1 Il m experiment
K,' 50c+6 | S5724e+7 | 3.651e+8 same
Kaw. 25e6 | 3.58¢-6 | 3916 1.53¢-8
Rep,r 20e+4 | 40e+s | 7.2e+4 not given
1y 4.0¢-3 7.0¢-4 20c-4 | 1.05¢-3103.2¢-3
Ri’?’%j 2.37 3.17 3.11 2.80!
Resy 1500 1680 1584 23200 4 15%

seen later, the range of non-dimensional accelerations corresponds to the range found in
the different test cases for oscillating flow. The results of the computations are listed in

Table 6.3. In the computations, transition 10.turbulence was defined 1o happen at that time

step when the computed turbulent viscosity at any point in the domain becamne at least of the

order of the molecular viscosity. The findings of this study are:

1.) The turbulence model displays qualitatively the correct behavior: As the acceleradon
increases, Rep i increases.

2.) Quantitatively, transition to turbulence is predicted about one order of magnitude too
early ( at 100 high values of the acceleration parameter and at 100 low umes
corresponding 1o 100 low Rep).

3.) The computational value of Kar is varies only slightly for the different experiments; in
the experiment this value is also almost constant.

4.) The computed non-dimensional boundary layer thickness is close to the theorencal
value of 2.85 cited in Lefebre and White. '

5.) The predicted transitional Re number baséd on the 99% boundary layer thickness is

about one order of magnitude too low.

1 Correlavon equation (4) given by Levebre and White (1987)
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Conclusions. While the turbulence model displays qualitatively the correct results, it -
predicts the actual onset of transition about one order of magnitude too early. Given the fact
that (i) because of expected grid dependence, only qualitative results were pursued and (i)

. the ransition criterion applied is somewhat arbitrary, the performance of the turbulence
mode! is viewed as being satisfactory. However, this study is important for suggesting
possible future improvement in the chosen turbulence model.
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7. PREDICTIONS OF OSCILLATORY FLOW

Since turbulence models are generally highly empirical, their predictions should be
compared with experiments when they are applied 10 a new situation. A novel situation is
given when the k-€ model is applied to oscillating flow, and comparison with the data of
the oscillating flow test facility of the University of Minnesota will be made. But according
to which criteria will the agreement berween the computed prediction and the experiment be
judged ? Ideally, a direct comparison of the turbulent shear stresses seems 1o be desirable.

However, shear stresses have not been measured and might not be measured at all.

Experimental data documenting the transition in oscillatory flow have been established
by Seumne (1988). This data can be taken to check the wransition predictions of the
rurbulence models qualitatively. A quantitative comparison is not possible, since (i) the
ransition data itself are valid only qualitatively (cf. Seume, 1988) and (ii) the only
measured fluctuation component is u’, and a comparison with the quantty k of the
turbulence model involves knowledge of how isotropic the turbulence is. From the data of

Laufer (1954) it is evident thatk # 1.5 0’2 even for steady flow.

Measured velocity profiles are available for one data point (termed SPRE in this work).
Quanttative agreement of the prcdictidns with the experimental data ca.n be checked. For
engine design considerations it is imporant to know the local and average friction
coefficient, ¢, which is proportional to 9u/ar at the wall. Exact prediction of the velocity
gradient near the wall is difficult because of the steep gradients there. Therefore, 2
comparison between the computed ¢f and the measured is desirable. While in principle the
experimental data reveals this information, due 10 experimental problems it has not been
possible so far 10 measure cr. Computationally, cf data is available whenever velocity

profiles are computed.

Thus. the availability of experimental data allow the following comparisons to-date:
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1) qualitative prediction of transition
2) quantitatve agreement of velocity profiles not 100 close near the wall.

Nomenclature: In the following, the nomenclature and comparisons will refer to the
University of Minnesota oscillating flow experiment. For a description of the experimental
set-up see Seune (1988). The the x-axis starts at the “drive end” of the tube and ends at the
“open end™. Four out of the five cases investigated here used a pipe length L/D of 60.
Consequently, an axial location x/D of 44 is closer 1o the open end and an x/D of 16 is
closer to the drive end. The mean flow velocity will be of the type

up(t) = u;,.,m, sin(t) (7.1)

The cycle time will be expressed in terms of crank angle. However, contrary to Seume
(1988), here we define crank angles between 0° and 180° when the mean flow is along the
positive x-axis (i.e., coming from the drive end), while crank angles between 180° and
360° refer to flow against the positive x-axis (i.c. coming from the open end). For the
comparison with predictions, the experimental data were converted 1o this frame of

reference.

7.1. SPRE Test Case:
Moderate Reynolds Number, Moderate Valensi Number

7.1.1. Prediction of Laminar Oscillating Flow

To demonstrate the capability of the numerical scheme adapted here, laminar oscillating
flow in a finite pipe was computed for Va = 80. The resulting velocity profiles in the axial
center of the tube were compared with analytical results from the Uchida analysis. As can

be seen from Fig. 7.1, the agreement is excellent. The computations were made with the
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same 23 by 23 grid employed later for the HRN k-€ model. Also, 12 time steps per cycle

were used in connection with a Crank-Nicholson ame integration scheme.

7.1.2. Predictions with the High-Reynolds Number k-€ Model

For preliminary studies, 3 cycles of oscillatory flow at Remax = 11 700, Va = 80 and
L/D = 60 have been computed. Even though is known that the HRN form of the turbulence
model (i) cannot predict Tansiton and (ii) is not well suited for pipe flows at moderate Re
numbers, a computation seemed worthwhile. First, the computatonal scheme could be
checked with the much simpler HRN formulation, and secondly, this computation provides
a useful limiting estimate which can serve as an initial guess for more detailed and exact

computatons.

The grid used here was a coarse grid of 23 by 23 gnd points where the points in the
radial direction were densely packed near the wall. Thus, the first internal grid point was
placed either in the viscous sublayer or close to it throughout the cycle. The grid was fine
enough for this test. The first two cycles were computed with 12 time steps per cycle, the
third with 24. All computagons were carried out with a fixed Crank-Nicholson ume
integration scheme. The three cycles come very close 10 the periodic steady state as can be
seen from the performance of the friction factor (Fig. 7.2). A smaller time step does not
have a dramatic impact on the results of the primitive variables u and v. This suggests that
the time stepping procedure is well chosen. A smaller time step, however, changes the

values of k. €, jy more significantly than uand v.

Since the HRN mode] does not have the ability to predict ransition, the turbulence
model must be switched off “by hand” during the computations. In this study our empirical
ransiton criterion was simply to switch off the solution of the k and € equation whenever
the Re number fell below 2300 and to switch it on otherwise. For aRe number of less than

2300. the laminar flow was anticipated, and the arrays of k, € and i were set 10 2€r0. As
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can be seen in the graphs below, the sudden disappearance of ; at relative cycle times of
0, 0.5, 1 etc. illustrate how unrealistic the ransition process is modeled this way.

It proved 10 be extremely difficult to keep the scheme stable at the point where Re =0
(reversal of the mean flow direction). Even after many trial runs it remained somewhat
unpred.ictablé whether the computation would "survive™ the next mean flow reversal. This
pointed out the need for optimizing the initial guesses from which a computation at a given

time step was started and/or for another time stepping procedure.
So far we used as initial guesses:
piy) =0
u(i,j) = (1-fgp) uplg(iJj) + fgp um
v(ij)=0
- 2
k(ij) = 5 Tl<-um< for Re > 2300

£(ij) = 0.05 k2fv
where fgp is a first guess parameter which varies continuously between zero and one (1
for large time steps and few time steps per cycle, 0 for small time steps and many time

steps per cycle).

Also, reliable criteria for nonlinear convergence were determined. Define Omax as the
maximum absolute scaled value of the error in the mass conservation for any one control

volume. Then:

relax(u)*relax(v)*relax(p)
Omax < 11*m1

d06max <0
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change in overall kinetic energy in domain <1%
relax(k)*relax(e)*relax(iy)

was required for at least 3 consecutive iteratons.

The boundary conditions for the turbulent kinetic energy and the terbulent dissipation
rate were 6% turbulence intensity and g =0.05ineq. (6.2). A velocity boundary condition

of sinusoidally-varying slug flow into the domain was assumed.

In the following, the results of the computations are presented. A comparison with the
measured data of Simon, Seume and Friedman (1989) is given later together with the

results of the low Reynolds number turbulence model.

Results. The results of the computations are shown in Figs. 7.2 and 7.5 Figure 7.2
shows the computed friction factor as a function of the crank angle and compares it with the

friction factor correlations for steady situations at the respective Re number.

Discussion. Compared to the laminar flow computation hardly any flow reversal is
predicted. This is good news for the boundary condition geatment of the outflow
boundary: Since at an outflow boundary outflow is assumed, complete upwinding is used
there to eliminate the need to know the boundary conditions there. However, if there were
10 be inflow at an outflow boundary, information about the outflow boundary would be

needed a priori. And this information is not normally available.

As can be seen from Fig.7.5, the gross characteristics of the flow can be obtained from
a HRN compuxaxioﬁ. But the near wall velocity and thus the friction factor predictions do
not follow the experimental data well . This should not be a surprise, because the validity
of the universal law of the wall, on which the HRN relies, is very questionable for the

situation investgated.
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7.1.3. Prediction with the Low Reynolds Number k-€ Model
7.1.3.1. Development of Computations

For the SPRE test case (Remax = 11 700, Va = 80 and L/D = 60), a fluid flow
computation was made using the Lam Bremhorst form of the low Re number k-€
wrbulence model. For the first cycle computed with the LRN model, the computations at
each time step were started from the results obtained with the HRN model described above.
Except in the case where the number of time steps per cycle was 120, the computations of

the later cycles were started from the corresponding results of the previous cycle.

At first, four additional cycles were computed, cycles # 4, 5, 6 and 7, each with 24
time steps per cycle. In cycle #7 the periodic steady state was reached and the results
practically did not change any more. As inflow boundary conditions a TI of 5% for the
kinetic energy and a { of 1/(TT Re0-875) [cf. eq. (6.20)] for the dissipation rate were used.

Later on, two more cycles (#8 and #9) were computed using measured velocity
fluctuation data at the open end as the actual inflow boundary condition for k. This was
done to eliminate the uncerainty associated with the assumed boundary condition in cycles

#4 10 #7.

Finally, the grid independence of the results obtained was verified. 3/2 cycles were
computed with 120 time steps per cycle and a grid of 33 by 51 grid points, and 3/2 cycles
with 24 time steps and a larger grid of 64 by 91 grid points. The computation with 120 time
steps per cycle was started at 0° crank angle with the results from cycle #9. The subsequent
computations were started with the converged result of the previous time step. For the large
grid computation, the results of cycle #9 were transposed to the finer grid, and the
computations were started from the corresponding results of cycle #9. As will be shown
later, the results of both tests were practically identical to cycle #9. The prediction of
transition was not altered by the use of a finer grid nor by the use of more time steps. This

is an important finding since in Chapter 6 some grid dependence of the transition predicuon
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was found. The different behavior of the LRN model might be explained by the fact that in
oscillating flow, due to history effects, the flow before transition is never totally
undisturbed as assumed in the quasi-steady transition tests. From this we conclude that
quantitatively trustful results may be, in principle, obtainable for oscillating flow from the

turbulence model used.

7.1.3.2. A New Time Integration Scheme

For the computation of the fourth cycle, the same time integration scheme as for the
HRN model was used: a fixed Crank-Nicholson scheme. However, it was found that
convergence frequently was not reached after as many as 200 nonlinear iterations. Then, if
a solution of the next step was tried (even though the previous step was not fully
converged), this solution nearly always diverged. Sufficient and dynamic under-relaxaton

and very many nonlinear iterations were the key to convergence at each ime step.

As initial guess, the values of the previous cycle were used at each time step of the fifth
cycle. Initially it was assumed that only a few iterations would be necessary at each time
step to reach convergence. But this hope did not come true. Again, many iterations needed

to be done to prevent the subsequent time steps from diverging.

A thorough review of the ime integraton scheme used so far revealed the underlying
problem. In the LRN model computation 33*51 grid points were used, most of them
placed very close to the wall. As the numerical grid becomes finer and finer, the Crank-
Nicholson formulation may become physically unstable. The fine grid near the wall
practically assures that the the Crank-Nicholson scheme would become unstable unless
many more time steps are taken. One possible solution would be to use a scheme between
the fully implicit and the Crank-Nicholson scheme which is stable. This, however, would
imply that the time integration scheme for the total domain would be based on the most
unfavorable conditions for a Crank-Nicholson scheme in it, namely on the conditions near

the wall. Near the wall, the effect of mass inertia is relatively small, whereas in the center
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that effect is significant. Wherever inertia plays an important role, time history effects
become important which are - in an always changing situation - better represented by the
Crank-Nicholson scheme. Therefore, it is not as important to have a Crank-Nicholson
scheme for the near wall region as it is for the center. This consideration bore out a ime
integration scheme which picks a time integration factor for each control volume and for
each interface individually, based on the local conditions. For the situation under
investigation here, the time integration factor varied from almost 1.0 near the wall 1o around
0.95 in the center. Surely, for time integration factors that close to 1.0, a simple fully
implicit method would have provided almost the identical results. This scheme proved to be

stable at all times and was used for all cycles from #5 on.

7.1.3.3. Results

Comparison with measured u’rms data. Assuming isotropic turbulence, the
computed turbulent kinetic energy can be transformed 1o the rms axial velocity fluctuations:

(7.2)

U‘rm5= \’2/3 k

Figure 7.3 shows a comparison of the measured velocity fluctuations with the
computations at an axial location of x/D = 44 and 3 radial locations, centerline, intermediate
and near the wall. The three computational curves plotted show the influence of the gnd
size in time and space. The measured T1 at the inflow is used in either case. However, even
with a flat TI of 5% (cycle #7) the computed curve looks alike and is not shown. The
significant rise of u'rms at circa 230° coincides in the experiment and the computations
closer to the wall. However, the computations do not forecast a rise in the center. Also, the
predicted decrease in turbulent fluctuations occurs over a much longer period than
measured. It is believed that here the computation and the experiment show two completely
different mechanisms of transition and relaminarization. The sudden decrease of u'pms at
300° during the decelerating phase at a relatively high Re number indicates that the

measured fluctuations between 230° and 300° correspond to a “turbulent slug™ being sucked
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in from the open end (cf. Seumne, 1988). Without this slug, the flow at this location would
remain laminar-like. On the other hand, the computations do not “see” that slug and rather
describe an ordinary transition to turbulence at a too low, but computationally high enough
Re number. This hypothesis is supported by Chapter 6.4., where it was found that in
accelerated flow the turbulence model predicts transition at too low Re numbers. The
computational transition predicts boundary layer instabilities and happens first near the
walls. The high fluctuations closer to the wall will be transported to the center, but will
reach the centerline only further downstream. Therefore, no rise of v’y is shown at the
centerline in the computations at this axial location. This explanation is supported by the
computed fluctuations rising at about 90°. Here the axial location is further downstream of
the inflow and the numerically predicted fluctuations spread over the entire cross section. In
this case, experiment and computation *‘see” the same thing, i.e. ordinary transition to
turbulence. Again, the turbulence model predicts transition at a too low Re number, given
the rapid acceleration. The third rise in u’mg just after flow reversal at 180° is predicted
very faithfully by the computation. It is believed that this rise is due to fluid that has
become turbulent just after passing the probe location at x/D=44. Just after flow reversal,

the fluctuations have not died down yet and revisit the probe location.

In the following, we try to shed light on the question why the turbulence model does
not predict the experimentally observed turbulent slug, even though the correct inflow
boundary condition is used for the turbulent kinetic energy. Fig. 7.4a shows the measured
U’'m; at the inflow, the theoretical mean flow for this flow situation and the ratio of the two
quanttes u’mgs/um(t) which is equivalent to the TI at the inflow. The u’mng values were
actually measured at the open end, but it is assumed that the inflow conditions are the same
for both ends of the tube. The given curves can be repeated for crank angeles 180° to 360°.
Figure 7.4b shows axial profile of k at the centerline at different crank angles during the
period of inflow from the open end. The values of k at x/D=60 correspond to the measured
u’'ms values of Fig.7.4a. It can be seen that the k values vary sharply between x/D=60 and
x/D=58. At x/D=50, virtually all information about the inflow boundary condition is los!
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or dissipated. We suspect that inflow boundary condition for € provides unrealistically high
values. High values of € lead to a rapid dissipation of k just after the inflow and imply that
in the computations no “turbulent slugs™ could travel any significant distance downstream
from the inlet. This suggests that further work is required to realistically specify € at the
inflow and that {(Re) of eq. (6.20) should be modified.

Comparison with measured velocity profiles. Figure 7.5 shows a comparison
of the computed and measured velocity profiles at an axial location x/D = 44. It can be seen
that the HRN and the LRN models give similar results in the center of the tube, but differ
considerably towards the wall. In general, the HRN model predicts too high velocities near
the wall. The results of three LRN computations are shown:

(i) no experimental TI, 24 time steps per cycle, 33 by 51 gnd

(ii) experimental T1, 120 time steps per cycle, 33 by 51 gnd

(i1i) experimenta! T1, 24 time steps per cycle, 64 by 91 gnd
The three LRN computations are practically indistinguishable. This verifies the grid
independence and shows that the measured TI does not influence the predictions at this

axial location. Table 7.1 tries to evaluate and to classify the results shown in Fig.7.5.

Table 7.1: Evaluation of Figure 7.5

Agreement with expeniment Agreement with experiment
Crank Angle HRN LRN Crank Angle  HRN LRN
X satisf. good 210° satisf. good
&r fair satisf. 24(r fair satisf.
r fair satisf. 270° fair satisf.
120° fair satisf. 300° poor fair
150° satisf. good 330° fair fair
180° good good 360¢ good good

Scale: good - satisfactory - fair - poor




From this evaluation, a number of questions arise:
1) Why is there good agreement for the LRN case at 150° and only fair at 330° ?
2) Why is there satisfactory agreement for the LRN case at 120° and fair at 300° ?
3) Why is there only little improvement at 60°, 90°, 300° and 330° from the HRN to the
LRN model ?

The following discussion shall assess these questions. From Fig. 7.5 and from Table
7.1 it is evident that the results do not show symmetric deviations from the experimental
results, i.e. the deviations at 150° differ significantly from the ones at 330° etc. For the data
pair 60°/240° the predicted data is generally "too turbulent”. However, this oend is more
pronounced at 60°. The centerline velocites are underpredicted at 60° and on target at 240°.
Near the wall, the absolute value of the velocity is overpredicted. An explanation for the
deviation at 60° could be that the strong acceleration keeps the flow longer laminar than the
turbulence mode] can predict. This is in line with the test of the model for constant
acceleration flows (see Chapter 6.4). From Fig. 7.3 it becomes clear that the better
agreement at 240° comes from separated turbulent eddies being sucked in from the nozzle at
the beginning of the second half of the cycle. The action of these eddies would increase the
turbulent kinetc energy and counter the effect of the acceleration. Therefore, the measured
data at 240° are "more turbulent” than those at 60°. This explanation also holds for the data
pair 90°/270°. However, it appears that at 90° there is a very swong overprediction of the
absolute values of the velocities between y/D=7x10-3 and 10°1, whereas at 270° the
prediction follows the experiment much better. Yet, at 270° all experimental data lie below
or on the predicted curve. This indicates that the mass balance was not satisfied in the
experiment. If the experimental data of 270° is shifted to give the same mass flow as in the
computation, a similar trend as in the case of 240° can be seen. For 120° and 150° crank
angle, similar deviation patterns are found. First, all experimental data are above or on the
predicted curve, again indicating experimental differences in maintaining the mass flow
rate. Near the wall, the prediction is right on target, whereas in the center, the predicted

data is too low. The data at 300° and on 330° shows an overprediction of the absolute value



of the velocity near the wall, followed by an underprediction towards the center and the
correct values at the centerline. The experimental data clearly looks laminar-like. Based on
the measured boundary conditions for u’mgng and on Fig. 7.3 that is due to the action of the
nozzle before the flow enters the tube. There, fluid from the quiescent outside is sucked in
and accelerated. The flow into the tube is relatively little disturbed and may well develop
like a laminar flow initially. As seen in Chapter 6.2, at an axial distance of 16 diameters
from the inlet, the flow will be laminar-like at moderate Re numbers unless the T1 is very
high. In the equivalent cases of 120° and 150°, the axial distance from the inflow is x/D =
44. By then, a spatial transition is very likely 1o have happened which could explain the
different behavior between 120° and 300° or 150° and 330°.

It is remarkable that the near wall velocities are generally well predicted. It is the near
wall velocities which determine the computed cf value. Therefore the cf predictions can be

regarded with confidence.

Given the remaining uncentainties of the experimental results, the general agreement of

the LRN predictions with the experiment is considered to be good.

Law of the wall. As can be seen in Fig. 7.6, the predictions support the hypothesis
that the universal law of the wall is not a good representation for the velocity profile near
the wall or even throughout the cross section. This does not come as a surprise since the
universal law of the wall has already been shown for steady flows to be not applicable at

low Re numbers.

However, it can be seen that, except at flow reversal, there exists a laminar sublayer up
to a y* of about 7. Beyond this value, a logarithmic relationship between u* and y* may be

formed, but the slopes are neither identical to the universal value nor constant at all.

Tu and Ramaprian (1981) argue for pulsatile flow that the velocity does not scale with
the wall shear stress at the same instance of time. Since the wall shear stress and the mean

velocity have a phase difference could one scale the velocity with the shear stress of the



corresponding phase angle? To answer this question conclusively for oscillating flow, a

phase relationship between u and 1o should be established, similarly like in laminar flow.

Friction coefTicient. The friction coefficient for fully dcvélopcd flow derived from
the turbulent steady state correlation does not agree well for the accelerated part of the cycle
with the computed friction factor, which predicts lower values ( Fig.7.7). The agreement
get rather close in the decelerated phase. The predictions of the HRN and LRN models are
significantly different. Given the superiority of the velocity predictions obtained with the

HRN model, it can be claimed that the HRN model does not give realistic values for cf.

Entrance length effects. Entrance length effects are important for about one third of
the length of the tube during most of the cycle (Fig. 7.8). The fact that cfx initially
decreases below the fully developed limit can be explained by the laminar-like flow
development downstream of the inlet. This effect is relatively pronounced because of the
low (experimentally determined) TI. It seems appropriate that a locally averaged friction

factor for this case takes account for the entrance length effects.

Other quantities. Fig. 7.9 shows the computed pressure distribution throughout the
cycle. Figures 7.10, to 7.12 show the time variation of the turbulent kinetic energy, the
dissipation rate and the turbulent viscosity at x/D = 44. Figure 7.13 is a vector plot of the
the velocity. Figures 7.14, 7.15 and 7.16 show the variation of k, € and pi¢ at different

crank angles.
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Fig. 7.9: Predicted axial
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7.2. Other Test Cases Computed

There were four more test cases computed, case e, d, m, p. The lettering of the cases
corresponds to the names of Seume’s experiments. According to Seume's findings, case ¢
lies in the “fully turbulent” region, a region where the maximum Re number is high enough
to cause instabilities to significantly perturb the flow, but where the frequency is too high to
allow the fluctuations to die down as the flow reverses directions and accelerates. In this
case, the ability of the turbulence model to predict transition is secondary. Case p is the
corresponding case on the laminar side. According to the experiments by Seumne (1988)

and Ohmi et al. (1982) and Iguchi et al. (1983), the flow in case p always remains

Table 7.2: Test cases investigated

Case Remax Va Str L/D AR Mam Ka‘max.
————— -

SPRE 1.17e¢4 80 0.0274 60 1.22 0.015 9.36e5
d 1.32e5 81.2 0.0025 60 13.6 0.17 1.07e7
e 1.87¢5 230.3 | 0.0049 60 6.8 0.23 4.31e7
m 2.39¢4 230.3 | 0.0386 68.5 0.8 0.03 5.50e6
p §.43e3 231.1 0.0548 60 0.3 0.01 1.95e¢6

laminar. Here, the ability of the turbulence model 10 accurately represent transition is the
primary factor for accurate predictions. Case d and m are in the rransitional regime where
the flow is laminar-like during parts of the cycle, and turbulent-like during the rest. In
particular, with case d we can test the influence of increasing the Re number from the
SPRE case while keeping the frequency constant; with case m we can test the influence of
increasing the Valency number while maintaining the order of magnitude of Re number.
The maximum non-dimensional acceleration occurring in each of the test cases falls

approximately in the range of accelerations investigated in Chapter 6.4.
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Comparison with experiment. No measured velocity profiles are available for
either of these cases. However, since the profiles in the SPRE case can be predicted fairly
well, we presume that also in the cases considered here the predicted profiles will be
realistic provided that we can model transition correctly. For case p the laminar computation
can give some basis for comparing velocity profiles. Available from experiment are the rms
fluctuations at different locations for cases ¢, d and p. Even though case m is cited in
Seume (1988), the data files could not be found any more. Figure 7.17 shows a qualitative
comparison of the measured rms velocity fluctuations with the computed data at x/D=16
(near the drive end). While the agreement is a very close between experiment and

computation in cases ¢ and d, it is decidedly worse for case p.

In case e and d, the computed fluctuations in the center show a more structured, wave-
like behavior than their experimental counterparts. In case e, the experimental near wall
profile shows a clear phase lag as compared to the computations. As discussed in Chapter
3.3.6., the relaxaton time of turbulence scenﬂs to play a role in this case. The
computational fluctuations are in phase with the mean flow field because the present
turbulence model requires an immediate turbulent soess response to a large scale shear. The
measured phase lag in the near wall fluctuations will most likely lead to a phase lag in the
friction coefficient which is larger than predicted. In case d, where the frequency is only
about one third of that in case e, no such phase lag can be detected in the measurements. In
case p, the assumption of a specific value of TI at the inflow influences the result
significantly. For a short pipe this outcome can be expected in light of the findings of
Chapter 6. Based on the measured Tl in the SPRE case, it is believed that the 0.5% TI for
case p is closer to the experimental conditions. The computations show a clearer up-andQ
down trend than the experiment. Also, disregarding the pitfalls of a quantitative comparison
for a moment, the level of the fluctuations predicted seems to be higher than seen
experimentally. However, especially for the case of 0.5% T, the level of fluctuatons

remains very low throughout. even near the wall.
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Cross stream transport of turbulence.The effect of cross stream transpornt of
turbulence is manifested by a phase shift between the near wall fluctuations and the
centerline fluctuations and can be seen from Figure 7.18. The three cases shown (e, m and
p) have the same frequency but different Remax. The computed shift is greatest for case p
and small for e. In case e, practically during the entire cycle time, turbulence is generated
near the wall and transported toward the center. In case p, fluctuations will be transported
towards the center during the decelerating phase, and toward the wall in the accelerating

phase. Case m lies in between those two extremes.

Friction coefficient for fully developed flow. Figure 7.19 shows the
computed friction coefficients and compared them with the laminar and turbulent steady
state correlations. It becomes clear that for cases d and e the turbulent steady state friction
coefficient is an excellent representation, whereas the results for case m are similar like for
the SPRE case where the ¢g values depart markedly from the steady state correlation in the
accelerating phase. For case p, the steady state correlation is very bad. This, however, has
long been known from analyses, experiments and computations of laminar oscillatory
flows. This finding supports the Shemer's (1985) hypothesis that a similarity parameter
like the Va number which describes the influence of the unsteadiness of the flow on the
various flow parameters like cf should be built using some kind of effective viscosity
instead of the molecular value. It is the effective viscosity that connects the motions of the
boundary layer with the core in the tube. If the effective viscosity is high throughout the
cycle (case d and e), then the influence of the unsteadiness on the flow parameters is small,
even though the ordinarily used Va number suggests a strong influence. Note that for cases
SPRE and m the average effective viscosity is higher in the decelerating phase where the
steady state correlation agrees much better. Fig 7.19d shows, in addition to the laminar and
wrbulent steady state correlations, the results of a computation of case p in which the
turbulence model was turmed off completely. It can be seen that a variation in the
specification of Tl influences the near-outflow ¢ predictions only marginally. During the

accelerating phase, the “turbulent™ computations follow exactly the “laminar’ values. In the
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decelerating phase, the “turbulent” computed friction coefficients are clearly higher than the

corresponding “laminar” values.

Entrance length effects. Effects of the hydrodynamical entrance length are
negligible for cases e, d and m (Fig.7.20). Given the proximity of the Remax humbers of
cases SPRE and m, it is striking that the entrance length effects are quite different.
However, the T1 used in case m is a flat 5% throughout the cycle which is much higher
than what is used in the SPRE case. As known from Chapter 6, a higher TI causes the flow
1o develop sooner as a turbulent flow which explains this apparent discrepancy. Case p
with 5% TI looks much like case SPRE. However, with 0.5% TI, the behavior at 150°
crank angle deviates considerably from a steady state entrance length behavior. Generally,

for case p, entrance length effects do play a role for the given pipe length.

Other quantities. Figures 7.21 to 7.36 show 3-D plots for the axial velocity,
turbulent kinetic energy, turbulent dissipation rate and turbulent viscosity for the various
cases. It may be noted here that for case p the velocity distmbutions obtained with the

turbulence model switched on look very much like the laminar profiles.
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Fig. 7.19a: Comparison of
computed fully developed
friction coefficient with steady
state correlations. Data point
e: Remax=1.87x105, Va=230,
LD=60.

Fig. 7.19b: Comparison of
computed fully developed
friction coefficient with steady
state correlations. Data point
d: Remax=1.32x10°, Va = 81,
LD=60.
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Fig. 7.19¢: Comparison of
computed fully developed
friction coefficient: with
steady state correlations. Data
point m: Remax=2.39x104,
Va =230, LID=68.5.

Fig. 7.19d: Comparison of
computed fully developed
friction coefficient with steady
state correlations. Data point
P Remax=843x103, Va=231,
L'D=60.
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Fig. 7.20¢: Ratio of local 10

Sfully
coefficient at various crank

developed friction

angles. Data point m:
Remax=2.39x10%, Va=230,

L/ID=685.

Fig. 7.20d: Ratio of local to
fully developed friction
coefficient at various crank
p:

angles. Data point

Remax=8.43x103, Va=231,

LiD=60, TI=5.0%.
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Fig. 7.20e: Ratio of local to
fully

coefficient at various crank

developed friction
angles. Data point p:
Remax=8.43x103, Va=231,
LD=60,TI=05%.
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7.3. Conclusions

1.) Starting from the results of the computations with the HRN turbulence model, the
periodic steady state for case SPRE was successfully computed with the LRN

turbulence model. In this model, no empirical ransition criterion whatsoever was used.
2.) The predictions obtained are grid independent.

3.) Transition triggered by turbulent slugs (as seen in the SPRE case and described by
Seume, 1988) is not predicted at the axial location investigated. In the SPRE case,
ordinary transition is faithfully predicted but at somewhat too low Re numbers. The
transition predictions for the high Remax cases e and d compare very favorably with the

experiment. The always lamiar case p is computed very laminar-like.

4.) Based on the transition performance observed here, it is not necessary to take measures

1o broaden the predicted transitional Re number range (cf. Chapter 6.3.).

4.) For case SPRE, the computed velocity profiles at x/D = 44 agree rather well with the

experimental data and show clear improvements over the HRN computation.

5.) The universal law of the wall does not hold for oscillating flow. However, a viscous

sublayer following u*=y* does exist at least up to y*=7.

6.) The friction coefficient predictions show that for the two cases where Remax was
greater than 105, the steady state correlation is appropriate, at least up to Va=230. For
the two cases where 10 < Renax < 105, the steady state correlation can be used for the
decelerating periods of the cycle. Here, the friction coefficients of the accelerating parts
of the cycle have yet to be correlated. Below Remax = 107 the steady state correlation

definitely does not hold throughout the cycle, at least for Va=200.
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7.) Entrance length effects are not important for the high Remax cases, but are significant

for all other cases.

8.) To judge the impact of the unsteadiness on the flow parameters, an effective Va number

should be used, Vaefr = @R2/vefr -

9.) In contrast to the findings of Rodi and Scheurer (1986) for the flat plate boundary layer,
here the LRN k-¢ mode! does not seem to have particular problems with adverse
pressure-gradients and decelerations. Rather, the problems come with strong

acceleration.

10.) The shortcomings of the LRN computations are threefold:
« In accelerated flow, the turbulence model predicts transition at too low Re numbers.
« The inflow boundary condition for € does not reflect reality and does not allow
turbulent slugs to exist long enough compared with the experiment.
« The observed phase shift between the mean flow and the fluctuatons at high Re and

Va numbers is not predicted by the turbulence model.
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PART IIl: HEAT TRANSFER AND IRREVERSIBILITY ANALYSIS

8. HEAT TRANSFER IN STEADY PIPE FLOW

In order to validate the part of the computer program responsible for the heat transfer

problem, laminar and turbulent steady pipe flow was computed for constant heat flux and

constant wall temperature boundary conditions. The criteria for the validation were the

following questions:

1.) How well does the code predict Nusselt numbers for fully developed flow?

2.) Is the thermal entrance region realistically predicted?

The Nusselt number correlations used to compare the predictions against werel:

constant heat rate

constant wall temperature

laminar flow

Nu =4.364

Nu = 3.658

turbulent flow

Nu = 0.22 Re0 8 P05

Nu = 0.021 Re0-8 pr 0.5

Figure 8.1 shows the computed local Nusselt numbers for a thermaily and

hydrodynamically developing pipe flow (L/D=150). The laminar computations were

obtained with a 21 by 25 coarse grid, the turbulent computations with a 33 by 51 gnid. The

computed Nusselt numbers for the laminar case approach the theoretical values exactly. The

computed values for the turbulent case are a httle too high (136 vs. 121 for constant wall

temperature, 138 vs. 126 for constant heat flux) but are within an error margin small

enough to be accepiable. Also. the constant heat rate problem yields a higher Nu number

IW. M  Kavs and M.E Crawford in Convective Heat and Mass Transfer, MacGraw-Hill Book

Co., New York, 1980,
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than the constant wall temperature problem. Yet, the fact that both numbers are over-
predicted seems to indicate that the turbulence mode] employed slightly over-predicts the
wall heat transfer. The entrance region is resolved realistically. For the laminar flow, the
computed Nu number decreases monotonically to the asymptotic limit of fully developed
flow. In case of turbulent flow, the predicted local Nu number decreases at first below the
fully developed flow limit because of a short laminar-like development of the flow. As
soon as the flow undergoes a spatial transition to turbulence (cf. Fig. 5.2 for the local

frictions coefficient), the Nu number increases to the fully developed flow value.

Figure 8.2 shows three-dimensional views of the temperature deyelopmem in the pipe
for two different dimensionless temperatures. In Fig. 8.2a the non-dimensional temperature
is simply T/T,, whereas in Fig 8.2bitis (Tw - T)/(Tw - Tpuik). Those plots are supposed
to be a reference against which one can compare the development of the temperature

profiles in oscillating flow.

For the 1.5” pipe of the University of Minnesota oscillating flow experiment and air.
the following relationship between the Ec number and the Remax number can be

established:

-

Re<
— §9.1()13 —ma
Ec=5210 I

where A8 is defined as (Tw - Tin)/Tin . Here, the representative temperature difference
(AT he entering the Eckert number is taken as Ty, - To, and Tg = Tin. Clearly, when A6
approaches a very small value, the Eckent number becomes large and viscous effects play a
significant role in the energy equation considered. In the given study, the temperature at the
inflow was constant at a value of 300, and in the constant wall temperature case, Ty was
set 10 360. This choice ensured that viscous heating was negligible. This is in line with
Seume and Simon (1986) who stated that viscous heating does not play a role in Stirling
engine heat exchangers. Despite that. the viscous dissipation function was always included

in the calculations.
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9. PREDICTIONS OF HEAT TRANSFER IN
TURBULENT OSCILLATING FLOW

Given the assumptions outlined in Chapter 2, the properties are all considered as being
constant in this study. Therefore the heat transfer problem is decoupled from the fluid flow
problem and linear. Having obtained realistic solutions for the fluid flow problem, we can
then expect realistic solutions for the heat transfer problem, too. The computations shown
in this chapter will possess all weaknesses of the turbulence mode] discussed above. Those

shortcomings will not be discussed here.

For a practical application, the calculation of Nusselt numbers for the test cases
considered is probably the most important task. The most precious question to be answered
by this study is whether the steady state Nu number correlations are applicable in case of
rurbulent flow. Also of interest is the question whether entrance length effects play a more
significant role in heat ransfer than in the fluid flow part. We will restrict our anention 1o a
Dirichlet boundary condition at the wall and inflow, and Neumann boundary condition at
the centerline and outflow. The altemative case of a Neumann boundary condition at the
wall could easily be obtained, too. However, in case of turbulent flow and Pr=1, the
difference in boundary conditions leads to an only insignificant difference of resulting Nu
numbers. To maintain similarity with the University of Minnesota oscillating flow test rig.
the temperature at the inflow cross section was assumned to be the same for inflow from the

drive and from the open end.

9.1. Nusselt Number Calculations near the Outflow

Figure 9.1 shows the computed Nu numbers near the outflow cross section. As is the
case for the friction coefficients. cases SPRE and m as well as cases e and d correspond 10

each other. Case p stands out alone. In all cases, the magnitude of the Nu number
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throughout the cycle is much closer 1o the turbulent steady state correlation than for the
laminar correlation.

y
d

Cases SPRE and m, where Repm,x is moderate, display a definite phase shift of aboui
the same magnitude (=20° crank angle). In the accelerating phase, the Nu number is less
then the turbulent steady state correlation. This is expected since the accelerated flow is
“more laminar-like”, and less cross stream eddy transpon takes place. It may be noted here
that the corresponding friction factors at 15° and 30° crank angle are larger than the
turbulent steady state correlation, whereas the corresponding Nu number are smaller. For
the friction factor this can be explained by the velocity gradients alone, which are very steep
near the wall because of the acceleration. This is so even if there is no eddy transport. The
Nu number not influenced by this velocity gradient, but determined by the eddy transport.
On the other hand, the Nu number in the deceleration phase is enhanced by the increased

eddy transport.

The Nu numbers for cases e and d follow very nicely the turbulent steady state
correlation. Apparently, the eddy activity here is high enough to lock the boundary layer to

the core of the flow, similarly as in steady flow.

The Nu number pattern for case p shows the flow like laminar oscillating flow during
the acceleration phase and deviates from that towards a more turbulent Nu number in the
decelerating phase. The peak of the Nu numbers is offset by circa +80° compared to the

steady correlation peak.

9.2. Local Nusselt Numbers

Figure 9.2 shows the local Nusselt numbers as computed. For cases e and d, where
Remax is relatively high, the thermal entry length is short and the Nusselt number of the
thermally and hydrodynamically fully developed flow gives a good representation for the
entire tube. For cases SPRE and m, the thermul entry length affects a significant portion of

the tube. In the SPRE case. where the experimentally detennined, low TI boundary
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condition is used, the initially flow develops laminar-like, and the Nu number is less than
the fully developed value for about one third of the pipe length. In case m, a flat 5% Tl at
the inflow was assumed which causes the hydrodynamical entry length to be shorter than
in the SPRE case. Here, about one fourth of the length is permanently a thermal entry
length. The latter two cases show a similar behavior of the local Nu number at 30° crank
angle: the local Nu number here is significantly higher than the fully developed Nu number
practically throughout the tube. This can be explained as a history effect of the flow. What
is the near outflow cross section during one half of the cycle is the near inflow cross-
section during the other. Near the inflow, the respective inflow boundary conditions are
strongly felt, whereas away from it the flow is more determined by local conditions.
Shontly before flow reversal the leve! of turbulence is very low near the entrance. Then,
after flow reversal, the level of turbulence at the former near-entrance cross section builds
up only slowly. In contrast, in the center of the tube or at the near-outflow cross section

the level of turbulence is still relatively high before flow reversal . Therefore, just after flow
reversal, the level of turbulence there is higher than at the now outflow cross-section.
Consequently, the Nu number is lowest at the outflow cross section. In case m, due to the
high frequency, this history effect is still slightly present at 60° crank angle. Case p (5% TI)
is different from the previous two cases in that this history effect affects most of the cycle.
Only the curves from 120° on are practically free of this effect. Hence, the fully developed

Nu number value is not a good spatial mean.

9.3. Temperature Solutions

Underlying the Nusselt number results above are temperature solutions. In Figures 9.3
10 9.5 the temperature solutions are shown in two different ways: The temperature is
normalized simply by division by a reference temperature T,. For the SPRE case, a
normalization like in steady pipe flow is used, 8 = (T - T)/(Tw - Touw). The shown plots
look similar like plots for steady state. but the normalization brakes down for flow reversal.

Only cases SPRE. e and p are shown.
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9.4. Conclusions

1.) For Remmax numbers above 103, the turbulent steady state Nu number correlation
approximates well the computed instantaneous Nu number for the fully developed

flow, at least up to Va=230.

2.) For 104 < Remay < 105, the fully developed instantaneous Nu number can be related to

the steady state correlation by a simple phase lag relation (to be developed).

3.) Below Remax = 104, the instantaneous fully developed Nu number differs in phase and

magnitude from the turbulent steady state correlation.
4.) Thermal entry length effects are negligible for Rema, numbers above 105.

5.) Below a Remax of 103, the thermal entry length becomes appreciable and history effects

begin to play a role.
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10. ENTROPY GENERATION IN STEADY PIPE FLOW

10.1. Derivation of the Entropy Generation Term

As outlined in Chapter 2, the benefit of the differential equation for the entropy lies in
its entropy generation term. In heat exchanger design, techniques to reduce friction and to
enhance heat transfer are usually in conflict with each other. Applying the second law of
thermodynamics puts both irreversible processes on the same physical scale and allows to

properly evaluate their impact on the overall performance.

The differential equarion for entropy can be written as’ (Bejan, 1982)

Ds _ givid)+8"
p—--dw(T){-Sgcn

D (10.1)
the energy equation 1s
Dh_ 4iv(7314 PP
Zzdiv(g)+ =+ HO]
P Ix Q)+ tH (10.2)
and the continuity equaton is
Dp .-
—+pdiv(u)=0
D *PavY) (10.3)

The first term on the right hand side of eq. (10.1) can be rewritten as

D..
1 In the following. the quantity D denotes the substantial derivative.
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div(%):—]?div(ﬁ)-r-_l%ograd(T) o

Replacing div( G ) with the energy equation, the equation for the entropy becomes

Ds_ 4 1(.Dh_Dp
p—=—-grad(T)+—-[p——— —pd>]+$ N
o TR D ¥ (10.5)

Using Gibbs® equation T ds = dh - (1/p)dp and Fourier’s law, eq. (10.5) ransforms to

2
Spen = £ [grad(T)] +§r‘-¢
T (10.6)
For turbulent flow, the ensemble averaged equations are
DS __4iv i S I
P = V(T + Sgen-p divius) (10.7)
Dh_ 4o/ =\.DP . = LT S
= =-div(q)+—=—+ P +pe-pdiv(uh )+div(u
P q)+prtHO+pE-P (vh) (up) (10.8)
Itis
div(Us ) =s div(u )+ U  grad(s') (10.9)

and similarly for h” and p’. For constant density flows, the first term on the right hand

side drops out.

Combining equations (10.7) and (10.8), using (10.9) and applying Gibbs’ equation for

the fluctuation terms, the entropy generation term for turbulent flow takes the final form

196



< _ k =2, kg, P
Sgen = =5 lgrad(h)] +¥¢+-T-e

T (10.10)

The individual terms in eq. (10.10) reflect the irreversibilities due to heat conduction,
mean flow across a finite pressure gradient and fluctuations across finite pressure
gradients. All terms of eq. (10.10) are positive which is in accordance with the second law.
It is noteworthy that the heat transfer term in eq. (10.10) is governed by the molecular , not

the effective conductivity.

Using the non-dimensional variables as introduced in Chapter 2 and defining

T = Tl
° (10.11)
pR’
g=—3 ¢
H;er Ym.masx (10.12)
2
: T,D .
Sgen = _"—0{— Sgcn
Hier Ym.max (10.13)
the non-dimensional equation for the entropy generation rate becomes:
4 k K= P
s = 4 reradT)f +4E P+ 4% ¢
gen _
PrEc(T, -T,) 7 T T (10.14)

where the factor 4 on the left hand side is due to the use of D as length scale for the rate
of generated entropy. Here, the case Ec = 0 represents a singularity, and it is not clear a

priory how small Ec must be in order to justify an omission of the two last terms.
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To estimate how much entropy is generated in a numerical control volume, the
generated entropy of eq. (10.13) will be multiplied with the dimensioniess volume of the
control volume,

AV

Sgen,num =S LT
05RL (10.15)

ge

Note: The entropy production depends on the absolute temperature at which the
irreversible processes occur. Therefore, all results shown are only valid for the absolute

temperatures picked, or, more exactly, for the ratio of the absolute temperatures.

10.2. Results for Steady Turbulent Flow

Figure 10.1a shows the total non-dimensional entropy generation rate for a steady
turbulent pipe flow at Re = 50 000, assuming Ty, = 300 and Tw = 360 (like in the heat
transfer problem). Most of the entropy production occurs near the wall and near the

entrance cToss section where the gradients are especially steep.

Figure 10.1b shows the ratio of thermal entropy production (first term on RHS of eq.
(10.10) ) to to1al entropy generation. Figure 10.1¢ shows the ratio of frictional entropy
production to total enropy production, and Figure 10.1d shows the ratio of turbulent
entropy production to total entropy generation. Near the wall, where the most entropy is
produced, the thermal production is dominant. Frictional production is negligible.
Turbulent entropy production is significant towards the center of the tube and near the

entrance. However. of all three contributors, thermal entropy production is largest.
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Top left: Normalized total entropy generation rate; top right: thermal fraction of 1aal

generated entropy. bottom left: frictional fraction; bottom right: turbulent fraction.
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11. ENTROPY GENERATION IN TURBULENT OSCILLATING
FLOW

For the different test cases, it is of interest for the designer of a heat exchanger to have
the following two questions answered:
1.) Where does the significant portion of the irreversibility take place?
2.) Which process contributes most to the irreversibilities, heat transfer, friction of the mean

flow or turbulent dissipation?

As outlined in Chapter 10, the non-dimensional entropy depends on the absolute
temperature chosen to non-dimensionalize it. Since there is no compelling reason to choose
a particular temperature, its selection is somewhat arbitrary. This is a well known problem
in exergy analyses, too. However, from exergy considerations it can be argued that the
ambient temperature (if any clear defined T exists) is the preferred choice. Hence, the

results shown here are only exemplary for one typical case where To=Te and Tw/Ta=1.2.

Results and Discussion. Figures 11.1 to 11.3 show the total normalized entropy
generation in the domain at different crank angels for cases e, SPRE and p. In each case.
nearly all of the entropy is generated very close to the wall. The peak generation is very

close to the entrance cross section.

Figures 11.4 10 11.6 show the portion of entropy generation due to heat conduction for
cases e, SPRE and p. It becomes clear that, overall, conduction is the main contributor to
irreversibilities. This can be explained by the fact that the thermal irreversibilities depend on
the gradient of T, whose radial component is zero at the centerline. The turbulent

dissipation, in contrast, influences irreversibilities directly and is nonzero at the centerline.

Irreversibility contributions of turbulent dissipation do become more significant towards

the center and in the inflow region (Figs 11.7to 11.9). Especially in case e, turbulent
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dissipation seems to be the main contributor(in %) for much of the domain. However, since
also in this case by far the most overall entropy production takes place in a very thin layer

near the wall, thermal entropy production is the largest contributor t0 irreversibilities.

Conclusions. No generally valid conclusions can be drawn. For the cases considered
here, thermal entropy production was largest. However, this constellation can change if the
temperatures involved change, or if the Remax number is increased significantly. The above
posed questions must be answered individually from case to case. This points at the need

for reliable computer programs with whom each case can be simulated separately.
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PART IV: CLOSURE

12. OVERALL ASSESSMENT

12.1. Summary and Major Conclusions

1.) A literarure review shows that presently no detailed numerical study into fully

developed and developing turbulent oscillating flow and heat transfer is available.

2.) A control-volume based numerical algorithm suitable for solving the governing

equations exactly and efficiently is developed.

3.) The k-€ model in the Lam-Bremhorst form is identified as a suitable model for
oscillating flow predictions. It is shown that the model has the capability to predict
transition to turbulence in quasi-steady and accelerated pipe flow at Jeast qualitatively

correct.

4.) The oscillating flow predictions generally compare well with the experiment. This

validates the choice of the k-€ model for this study.

5.) With regard of the oscillating flow predictions, the major flaws of the k-€ model] are:
« The € inflow boundary condition is questionable.
« Transition in accelerated pipe flow is predicted too early.

« The present eddy-viscosity concept implies an infinite sess-response time to shear.

6.) A modification to the -equations is proposed in order to capture better the

acceleration/deceleration effects on transition and relaminarization.

7.) A complex valued turbulence viscosity is proposed.
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8.) The universal law of the wall does not hold for oscillating flow. A viscous sublayer

following u*=y* does exist at least up toa y* of 7.

9.) For Remax numbers above 105, the steady state correlations for the fully developed
friction coefficient and Nu number apply well. For lower Remay numbers, the

departures become larger with decreasing Remax and increasing Va.

10.) To estimate the influence of unsteadiness, an effective Valensi number should be used,

built upon the effective, not the laminar, viscosity.

11.) An 1rreversibility analysis demonstrates that for the conditions chosen, heat conduction

is the biggest contributor towards entropy production.

12.2. Contributions of This Research

To the best knowledge of the author of this work. the new and unigue features

contained herein are:

1.) The development of the locally adaptive time integration scheme for a nonlinear

convection-diffusion situation.

2.) The application and documentation of the predictions of the Lam-Bremhorst form k-¢

model for quasi-steady and accelerated fully developed and developing pipe flow.
3.) The oscillatory flow and heat transfer predictions.

4.) The proposed modification to the g-equation.
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12.3. Suggestions for Further Research

Four major points emerged for further investigation:

1.) The inflow boundary condition for € should be theoretically or, if possible,
experimentally investigated in order to enable the prediction of “mraveling turbulent

slugs” downstream of the inflow.

2.) The concept of a complex valued turbulent viscosity should be pursued to capture the
phase lag of the small scale motion with respect to the large scale motion in strongly

unsteady flows.

3.) The proposed modification to the e-equation should be tesied and scaled in order to

yield benter predictions for accelerated/decelerated flows.

4.) The data generated herein should be reduced to yield correlations for the friction factor

and Nu number which are needed in Stirling engine performance codes.
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APPENDIX

A. Vector Quantities in Axisymmetric Coordinates

Note: In this appendix, the following conventions apply:

[n o ]

Tensors are given in the form: | or 9P Ox |
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2-D Vectors are given in the form: [ J

{ress tensor.

r
-p+p_ ar-—le(-‘)l 0 p{%*#g—;-]
r
t= 0 p{2¥-%div(ﬁ)l 0
M ou av1 [ ou 2
p{3r—+8—xj 0 uILZ—a—-gchv(ﬁ)l

224




matic v

T it

grad(D) =

def(u) =

)=

Ju
or

isymmetr

-|<

ax

£+ 0

ax

225




div[p grad@) ]

Viscou

issipation

&
L

nction

n

226

19 (,, 08Y
10 (p9v, B

jon term G for turbulent kineti



\xm ._OJ xe _ e >a+x|msa+|-ma

1 _———
Tt u_lmﬂﬂ- e " T e e

_V_Q+Aw+wm|+mmv=uz_m+gun_
A AP DY ré

€1 ?euJVm . Xp w
—+ﬁ>|m=1_m+n_m |>m>a+>m=a+>ma

+\ X@ o an+%||mh>a+x|m=a+lﬁa

(xo . 121 (xp o %€ (10 )
ZI%EWT?I?:@A%:E_,ﬂ 76 € tae e M e e

paAjog suonenby jenualagyid Jo wISAS ‘g

227



C. Grid Generation

The grid generation can be divided into the two parts of dividing the radial and axial
directions into small stretches from which the control volumes will be built. The width of a
control volume will be denoted as YV(J) for the radial direction and XU(I) for the axial
direction. There are M1 grid lines dividing the radial direction and L1 for the axial
direction. J is the numbering of the grid points for the radial direction, I for the axial

direction. The axial grid lines were equidistant in all computations.
The objectves for the radial grid were:
« very dense near the wall
» neighboring control volumes should not vary too much in width
» sufficient number of grid points also in the center region should be maintained

Let us define y radial grid coordinate

J-2
X=M1-2

and y; be an intermediate location where we switch from one grid form to another.
There are many approaches thinkable. However, in axisymmetric coordinates, the

following customary approach does not work well:

YV(O) { ay +b X <X,

YL lax’+e x>y,

The reason for this is that in axisymmetric coordinates, not enough grid lines can be
placed in the region near the wall--which should be resolved finely--since the quantity x get

close to 1.0. even with a high exponent d. On the contrary, near the centerline, %
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approaches zero, and the resulting variation in the width of neighboring control volumes is

tremendous.

A remedy is to specify the following grid:

{ax X<X

b
aer+c x> X,

Which gives a linear grid between the centerline and X and an exponential grid
between x; and the wall. The parameters b and x; must be specified, the others are fixed.

Atthe wall, x =1 =. F(y) = 1. Therefore:

c=1-aeb

At . we require that the grid function is continuous and differentiable. Thus

]
b
e by, - 1]

a=

and a=abe®
Forb — — e = very dense near the wall;
forb— + o = very dense near ;.

This form was used for the grid generation of the LRN computations. For the
computations with the 33 by 51 gnd. x; = 0.4 and b=-5 were customanily used. For
the computations with the 35 by 64 grid. x; = 0.2 and b = — 6 were used. Figure C.1
shows a typically used gnd.
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Figure C.1: A nypical grid, 64 by 91 grid points. Note that the radial dimension is
stretched by a factor of 120.
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